• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthèse et relations structure-fonction de nouveaux analogues de l'apéline-13

Murza, Alexandre January 2015 (has links)
L'apéline est le ligand endogène du récepteur APJ, un membre de la superfamille des récepteurs couplés aux protéines G. Le système apélinergique est apparu comme une cible prometteuse associée à plusieurs processus physiologiques. Notre intérêt s'est porté particulièrement sur les rôles liés au système cardiovasculaire et à la modulation de la douleur. Nous posons l'hypothèse que la synthèse d'analogues de l'apéline-13 nous permettrait d'identifier d'une part des composés plus stables et d'autre part les voies de signalisation impliquées dans la modulation de la douleur, les effets hypotenseurs et cardioprotecteurs de notre cible. Ces outils pharmacologiques contribueront ultimement à concevoir un agent thérapeutique pour le traitement de la douleur chronique et des maladies cardiovasculaires. Les données de relations structure-fonction de l'apéline-13 révèlent la présence de deux pharmacophores distants importants. Le fragment N-terminal Arg[indice supérieur 2]-Pro[indice supérieur 3]-Arg[indice supérieur 4]-Leu[indice supérieur 5] semble primordial pour l'affinité, alors que la Phe[indice supérieur 13] C-terminale serait cruciale pour l'internalisation du récepteur et les effets hypotenseurs. Afin de mieux comprendre les relations structure-fonction de l'apéline-13, nous avons synthétisé près d'une centaine d'analogues linéaires et macrocycliques. Les composés ont été évalués pour leurs capacités à lier APJ, à inhiber la formation d'AMPc, à recruter les β-arrestines et à activer les protéines Gα[indice inférieur i/o]. Une variété de modifications chimiques a été introduite en C-terminal, nous conduisant à la découverte de composés de haute affinité et puissance. Deux analogues, 1Nal[indice supérieur 13] et 2Nal[indice supérieur 13], se sont distingués pour leurs différences d'effets analgésiques dans un modèle in vivo de douleur tonique. Ces derniers présentent une intéressante divergence de sélectivité fonctionnelle suggérant que l'effet analgésique serait associé à un biais favorisant le recrutement des β-arrestines par rapport à l'inhibition de l'accumulation d'AMPc. Un autre volet du projet dédié à l'investigation de la stabilité plasmatique de l'apéline-13 nous a permis d'identifier son profil de dégradation protéolytique in vitro et in vivo. L'évaluation des demi-vies plasmatiques des analogues de l'apéline-13, modifiés à des positions clés, a révélé l'importance de l'acide aminé C-terminal dans la stabilité plasmatique. Enfin, une étude préliminaire de SAR par une approche macrocyclique novatrice du ligand endogène nous a conduit à un composé induisant un effet hypotenseur deux fois supérieur à celui de l'apéline-13. Un autre macrocycle a, quant à lui, démontré une sélectivité fonctionnelle inédite, n'activant pas la voie AMPc mais provoquant le recrutement de la β-arrestine2. Cette classe de molécules, potentiellement plus stables, a un grand potentiel pour nous aider à identifier les voies de signalisation liées aux effets physiologiques d'intérêts, et représente surtout un premier pas vers un futur agent thérapeutique.
2

Action inotrope positive de l'apéline liée à l'augmentation de l'amplitude du courant sodique dans les myocytes cardiaque de chien

Chamberland, Caroline January 2008 (has links)
L'apéline est l'agoniste du récepteur APJ-R (putative angiotensin II receptor like), récepteur couplé aux protéines G. Exprimée dans le coeur de plusieurs espèces dont l'homme, l'apéline joue un rôle important dans le système cardiovasculaire. L'apéline a un effet inotrope positif sur le coeur. Szokodi et al. ont démontré que cet effet était dû à l'activation de la cascade PLC-PKC et que les échangeurs sodium-hydrogène (NHE) et sodium-calcium (NCX) étaient impliqués. Ils ont également démontré que l'augmentation de la force contractile du myocarde n'était pas due à l'augmentation du courant calcique de type L (I[indice inférieur CaL]). Nous proposons que l'augmentation de la contractilité est due à un effet de l'apéline sur le courant sodique rapide (I[indice inférieur Na]). Matériel et Méthodes. La localisation du récepteur APJ-R fut faite par immunofluorescence sur des myocytes isolés du ventricule gauche de chien. Les mesures du courant sodique sur ces mêmes cellules furent faites par la méthode de patch-clamp en configuration cellule entière en voltage imposé. L'apéline 13 et l'apéline 17 furent perfusées à des concentrations de 100 nM pendant 20 minutes pour évaluer leurs effets sur le courant sodique. Résultats. Le récepteur APJ-R est localisé sur la membrane sarcoplasmique des myocytes au niveau des bandes Z, une structure clé pour la contraction, ce qui nous indique que la localisation du récepteur est propice à la modulation de la contraction cardiaque. L'apéline 13 et l'apéline 17 augmentent I[indice inférieur Max] du courant sodique de 39% et 61% respectivement comparativement au contrôle. En plus de l'augmentation du courant sodique, les deux formes d'apéline déplacent l'activation du canal sodique de -6,8 mV et -8,6 mV pour l'apéline 13 et 17 comparativement à la condition contrôle. Ce déplacement de l'activation vers des potentiels plus négatifs augmente l'excitabilité des myocytes cardiaques et pourrait ainsi moduler la contraction cardiaque. L'inactivation du canal sodique n'est pas modifiée par la présence des deux formes d'apéline. L'apéline ne modifie donc pas la disponibilité du canal en fonction du voltage. Le temps de réactivation est significativement augmenté par la présence d'apéline 13 et 17 ce qui a pour effet d'augmenter la période réfractaire au niveau du coeur. Conclusion. Le récepteur APJ est bien présent au niveau des bandes Z des myocytes suggérant son implication dans la contraction cardiaque. Nos résultats sur le courant sodique démontrent pour la première fois que l'apéline affecte significativement ce courant et que cette augmentation du courant sodique pourrait être responsable de l'augmentation de la contraction cardiaque par l'apéline.
3

Études structure-fonction par modélisation moléculaire et mutagénèse dirigée de cibles thérapeutiques potentielles impliquées dans la régulation de l'équilibre hydrique et des fonctions cardiovasculaires / Structure-function studies by molecular modeling and site-directed mutagenesis of potential therapeutic targets involved in the regulation of body fluid homeostasis and cardiovascular functions.

Couvineau, Pierre 29 June 2017 (has links)
Ces travaux de thèse s'articulent autour de deux projets : les études structure-fonction de l'aminopeptidase A, d'une part, et celles du récepteur de l'apéline, d'autre part. I/ L'aminopeptidase A (APA, EC 3.4.11.7) est une aminopeptidase monozinc membranaire qui, dans le cerveau, produit l'angiotensine (Ang) III à partir de l'Ang II. L'Ang III est l'un des principaux peptides effecteurs du système rénine-angiotensine cérébral qui exerce un effet stimulateur tonique sur le contrôle central de la pression artérielle chez le rat hypertendu. Ainsi le blocage de l'APA par un inhibiteur spécifique et sélectif, l'EC33 ou sa prodrogue, le RB150, normalise la pression artérielle dans deux modèles expérimentaux d'hypertension artérielle (HTA). L'APA constitue une cible thérapeutique potentielle pour le traitement de l'HTA qui justifie le développement de nouveaux inhibiteurs de cette enzyme plus puissants et plus sélectifs que l'EC33 et avec un profil pharmacodynamique et pharmacocinétique amélioré par rapport au RB150. Pour cela, nous avons construit un modèle tridimensionnel (3D) de l'APA sur la base de la structure cristallographique de l'APA humaine récemment publiée. Nous avons ensuite validé ce modèle par des études structure-fonction par modélisation moléculaire et mutagénèse dirigée en démontrant l'implication, d'un résidu du sous-site S1 dans la spécificité de substrat acide de l'APA et de deux résidus formant le sous-site S2' interagissant avec le résidu P2' acide d'inhibiteurs tripeptidiques précédemment développés dans le laboratoire.II/ L'apéline est le ligand naturel du récepteur orphelin humain APJ (ApélineR), un récepteur à sept domaines transmembranaires couplé aux protéines G. L'apéline et son récepteur sont impliqués dans le maintien de l'équilibre hydrique et des fonctions cardiovasculaires. L'ApélineR constitue une cible thérapeutique potentielle dans le traitement de l'insuffisance cardiaque et des rétentions hydriques. Etant donné que la demi-vie de l'apéline dans la circulation sanguine est de l'ordre de la minute, l'objectif est de développer des analogues de l'apéline métaboliquement stables. Pour développer de tels composés, nous avons entrepris de comprendre comment l'apéline se lie à son récepteur et comment elle l'active. Dans ce but, nous avons construit un modèle 3D de l'ApélineR basé sur la structure cristallographique du récepteur aux chimiokines, CXCR4. Nous avons validé ce modèle par des études structure-fonction par modélisation moléculaire et mutagénèse dirigée. Nous avons identifié à la surface du récepteur, les résidus acides des boucles extracellulaires qui interagissent avec les résidus basiques de l'apéline. Nous avons ensuite développé des analogues de l'apéline-17 (K17F) métaboliquement stables par deux stratégies différentes. Premièrement, nous avons substitué chacun des résidus de l'apéline par son énantiomère de la série D ou par un acide aminé synthétique. Deuxièmement, nous avons ajouté une chaîne fluoroalkyle à l'extrémité N-terminale de l'apéline. Ces deux stratégies ont permis d'obtenir plusieurs composés dont les plus actifs sont le P92 et le LIT01-196 qui conservent des propriétés pharmacologiques identiques à celles de K17F et qui présentent une demi-vie plasmatique largement supérieure à celle du peptide endogène. Ces deux analogues se sont révélés particulièrement actifs in vivo avec une capacité à diminuer la pression artérielle et à réduire la sécrétion de vasopressine dans le sang conduisant à une augmentation de la diurèse aqueuse. Les modèles 3D validés de l'APA et de l'ApélineR seront utilisés pour des campagnes de criblage in silico de chimiothèques virtuelles afin de découvrir de nouveaux inhibiteurs de l'APA et des agonistes de l'ApélineR qui pourraient conduire à terme à de nouveaux candidats-médicaments. Ces composés pourraient être utiles pour le traitement de l'HTA et de l'insuffisance cardiaque. / The doctoral work was divided in two parts, one on the structure-function studies of aminopeptidase A, and the second one, on those of the apelin receptor. I/ Aminopeptidase A (APA) is a membrane bound monozinc aminopeptidase which generates, in the brain, angiotensin (Ang) III from Ang II. Ang III is one of the main effector peptides of the brain renin-angiotensin system, which exerts a tonic stimulatory action on the control of blood pressure in hypertensive rats. Thus, the blockade of brain APA by a specific and selective inhibitor, EC33 or its prodrug, RB150, normalizes blood pressure in two animal models of arterial hypertension (HTA). APA constitutes a potential therapeutic target for the treatment of HTA that justifies the development of more potent and selective APA inhibitors than EC33, with enhanced pharmacodynamic and pharmacokinetic profiles when compared to RB150. With this aim, we built a three dimensional (3D) model of APA based on the recently published crystal structure of human APA. We validated this model by structure-function studies combining molecular modeling and site-directed mutagenesis demonstrating the crucial role of one residue in the S1 subsite responsible for substrate specificity of APA for N-terminal acidic amino-acid residues and two other residues constituting the S2' subsite of APA involved in the binding of the P2' acidic residue of tripeptidic inhibitors, previously developed in the laboratory. II/ Apelin is the endogenous ligand of the human orphan receptor named APJ (ApelinR), a G protein-coupled receptor. Apelin and ApelinR are involved in the control of body fluid homeostasis and cardiovascular functions. ApelinR constitutes a potential therapeutic target for the treatment of heart failure and water retentions. Given that apelin half-life in the blood circulation is in the minute range, we aimed to develop potent metabolically stable apelin analogs.. In this context, it is necessary to understand how apelin binds to ApelinR and how it is activated. To do so, we build a 3D model of ApelinR based on the crystal structure of the chemokine receptor, CXCR4. We validated this model by structure-function studies by molecular modeling and site-directed mutagenesis. We showed that apelin interacts with the receptor through interactions between the basic residues of the peptide and the acidic residues of the ApelinR, located in the extracellular loops. ,We then developed metabolically stable apelin-17 (K17F) analogs following two different strategies. First, we substituted each residue of K17F by its D-isomer or a synthetic amino-acid. Secondly, we added a fluoroalkyl chain at the N-terminal part of K17F. These two strategies allowed to significantly improve plasma half-life of the modified peptides for several hours without modifying their pharmacological properties as compared to K17F. Two apelin metabolically stable analogs, P92 and LIT01-196, were found to have significantly higher in vivo activity than K17F with a strong capacity to decrease blood pressure and to inhibit vasopressin release in the blood stream inducing an increased aqueous diuresis. These new validated 3D models will be now used to perform in silico screening of virtual chemical libraries to discover new APA inhibitors and ApelinR agonists that could ultimately lead to new drug candidates. These compounds could be useful for the treatment of HTA and heart failure.

Page generated in 0.0361 seconds