• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 36
  • 23
  • 12
  • 9
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 224
  • 40
  • 37
  • 37
  • 35
  • 33
  • 32
  • 31
  • 27
  • 23
  • 23
  • 22
  • 21
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Isolation of early-responsive ncRNA from the wheat-Russian wheat aphid interaction

Nicolis, Vittorio F. 09 December 2013 (has links)
M.Sc. (Botany and Plant Biotechnology) / Wheat (Triticum aestivum L.) is the one of the three most extensively cultivated cereal crops worldwide (Shewry, 2009). In South Africa, wheat is cultivated in both summer and winter rainfall regions as monocultures typical to modern industrialised agriculture. Monocultures provide uniform crop quality and allow processes such as planting and harvesting to be mechanised (Altieri et al., 2009). However, the genetically homogeneous nature of monocultures increases the vulnerability of the crop to both biotic and abiotic stresses (Faraji, 2011). Future food production is challenged by predicaments such as an increasing human population while the ratio of arable land to population is decreasing. Yield losses of wheat due to biotic factors alone were estimated as 29 % (2001-2003) (Oerke, 2006). The need to reduce the gap between attainable yield and actual yield is therefore crucial in order to maximise crop production for future food security (Duveiller et al., 2007). One of the most damaging pests to worldwide wheat production is the Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov) (Arzani et al., 2004). A native pest of central Asia, the RWA has spread to all cereal producing areas of the world with the exception of Australia (Burd et al., 2006). While feeding on susceptible hosts, the aphid injects an eliciting agent into the host, which causes the breakdown of the chloroplast and cellular membranes, leading to the appearance of symptoms typical of RWA feeding, including leaf rolling (Botha et al., 2005). Leaf rolling creates a sheltered environment for the aphid from insecticides and predators, and this together with their parthenogenic and viviparous reproductive nature makes their rapid increase in numbers extremely difficult to control (Goggin, 2007). Resistant wheat genotypes currently represent the most effective long term solution to control RWA infestations; however resistance breaking aphid biotypes are rapidly overcoming the incorporated resistance genes under field conditions (Burd et al., 2006; Jankielsohn, 2011). Understanding the molecular basis of plant resistance to the RWA is crucial in creating cultivars with durable resistance (Botha et al., 2005).
152

Analysis of gene expression in Triticum aestivum L. cv. "Tugela DN" after Russian wheat aphid (Diuraphis noxia Mordvilco) infestation

Van Niekerk, Chantal 11 May 2005 (has links)
Please read the summary in the section 02back (Appendix 1) of this document / Thesis (PhD (Genetics))--University of Pretoria, 2005. / Genetics / unrestricted
153

Etude des mécanismes cellulaires de la transmission du Cauliflower Mosaic Virus / Cellular mechanisms of Cauliflower Mosaic Virus transmission

Bak, Aurélie 13 December 2013 (has links)
La majorité des phytovirus utilise des vecteurs pour être transmis d'une plante à une autre, et les pucerons sont de loin les vecteurs les plus importants. Alors que les interactions moléculaires entre le virus et son vecteur font l'objet de nombreuses études, les phénomènes intracellulaires qui précèdent l'acquisition du virus par le vecteur dans la cellule végétale ont été peu étudiés. Le Cauliflower mosaic virus (CaMV), développe dans les cellules de la plante hôte une structure spécialisée et indispensable à la transmission : le corps à transmission ou CT. Le CT contient la protéine P2 qui est essentielle à la transmission car elle constitue un lien entre la particule virale et un récepteur localisé au niveau de la pointe des stylets de l'insecte. Les particules virales, quant à elles, sont massivement stockées dans un autre type de corps d'inclusion: les usines virales. Cette localisation différentielle des composants majeurs du complexe transmissible implique qu'un mécanisme réunisse P2 et les particules virales lors de l'acquisition, c'est-à-dire au moment des piqûres tests du vecteur dans les cellules du parenchyme.Au cours de ma thèse, nous nous sommes focalisés sur les événements cellulaires qui se produisent lors de l'acquisition du CaMV par le puceron. Les résultats montrent que la piqûre du puceron est un stimulus qui déclenche deux événements : 1. le CT se désintègre quasi instantanément et la P2 qu'il contient est relocalisée sur les microtubules dans toute la cellule ; 2. en parallèle, les usines virales libèrent des particules virales, qui se distribuent sur le réseau microtubulaire, en s'associant à la protéine P2. Ainsi, un très grand nombre de complexes transmissibles se forment dans une configuration facilement accessible au vecteur partout dans le cytoplasme. De manière surprenante, ce remaniement des composants viraux au sein de la cellule est totalement réversible : P2 reforme un CT, et les particules virales sont ré-absorbées par les usines virales ; l'ensemble est ainsi disponible pour un nouveau « cycle d'acquisition ».Ces résultats indiquent que le CaMV manipule l'hôte au travers de corps d'inclusion aux fonctions multiples qui i) permettent la « perception du puceron » par le virus, et ii) mettent en œuvre une réponse immédiate qui favorise les chances d'acquisition du virus. Ces résultats supposent que le CaMV détourne une ou des voies de perception et transduction du « signal puceron » de la plante. Nous avons initié la caractérisation de cette/ces voies de signalisation par plusieurs approches, dont les résultats préliminaires sont présentés en détail. / To be efficiently spread, many plant viruses use insect vectors and the most common vectors are aphids. Molecular interactions between viruses and their vectors are the object of many studies, whereas transmission-related intracellular phenomena occuring in the host cell before the virus acquisition are poorly understood and rarely addressed. Cauliflower mosaic virus (CaMV) forms in infected cells a structure specialized for transmission: the transmission body or TB. The TB contains the protein P2 which is essential for virus transmission because P2 acts as a molecular linker and binds the virus particle to the stylet receptor. Virus particles are massively sequestered in other inclusion bodies: the virus factories or VF. This differential distribution of P2 and virus particles forces the vector to reunite them during feeding activity by mobilzing P2 from TB and virus particles from VF.During my thesis, we solved this mystery and uncovered an intriguing phenomenon: the TB disrupts at the moment where aphids insert their stylets into the tissue, and all P2 redistributes onto cortical microtubules throughout the cell. Simultaneously, some virus particles are exported from virus factories and recruited onto microtubules together with P2. In this configuration, P2 and virus particles are brought close together and in addition they are distributed homogeneously over the entire cell. This enables efficient acquisition by the vector and hence transmission even after short probing. Remarkably, this phenomenon is reversible and TB reforms after vector departure to be ready for a second round of transmission. These results prove that CaMV interferes with the very early plant-aphid interactions to organize transmission. Our findings suggest that plants perceive aphid activity from the moment of stylet insertion. The mechanistic details behind the TB and VF reactions are unknown and we have begun unravelling them with different approach which will be presented.
154

Étude des facteurs écologiques modulant les gammes d’hôtes des parasitoïdes / Study of the ecological factors involved in parasitoid host range modulation

Monticelli, Lucie 30 October 2018 (has links)
Les parasitoïdes sont des insectes dont le cycle de vie se divise en (i) un stade adulte libre durant lequel la femelle dépose des œufs dans, sur ou à proximité des hôtes et (ii) des stades immatures parasites durant lesquels les larves se développent en consommant leur hôte. Ils sont impliqués dans la régulation de la population de leur(s) hôte(s) et sont largement utilisés en lutte biologique pour réduire les dégâts causés par des ravageurs de cultures dans les agroécosystèmes. L’intensité de cette régulation dépend notamment de la gamme d’hôtes du parasitoïde c.à.d. le nombre d’espèces hôtes différentes dans lesquels il est capable de compléter son développement. La gamme d’hôtes théorique d’un parasitoïde a été largement étudiée et est déterminée par sa capacité à localiser, reconnaître et parasiter son hôte (gamme d'hôtes comportemental) et/ou sa capacité à utiliser les ressources de l’hôte et à contourner ses défenses immunitaires (gamme d'hôtes physiologiques). Cependant, les caractéristiques biotiques et abiotiques environnementales, pouvant potentiellement impacter les traits comportementaux et physiologiques des parasitoïdes et finalement la gamme d’hôtes théorique de ces derniers, ont été très peu étudié. C’est dans ce contexte que j’ai développé ma thèse avec pour but principal d’étudier l’impact de différents facteurs écologiques sur la gamme d’hôtes des parasitoïdes. Pour cela, j’ai choisi comme modèle d’étude les parasitoïdes de pucerons, largement utilisés en lutte biologique, et j’ai étudié le rôle (1) des goulots d’étranglement génétique intervenant lors de l’introduction de petites populations de parasitoïdes dans de nouveaux environnements (par exemple, en lutte biologique classique), (2) de la phylogénie des hôtes et des plantes hôtes, (3) des effets bottom-up du stress hydrique chez les plantes hôtes des pucerons, (4) de la relation entre (i) la qualité des pucerons en tant qu’hôte pour la larve de parasitoïde et (ii) la qualité du puceron en tant que source de nourriture (miellat) pour l’adulte et (5) des interactions indirectes induites par la présence d’hôtes alternatifs sub-optimaux, sur la gamme d’hôte théorique des parasitoïdes. La phylogénie des hôtes et des plantes hôtes ont un effet direct sur la gamme d’hôtes des parasitoïdes tandis que les goulots d’étranglement génétique, les effets bottom-up de la plante, la nutrition des parasitoïdes adultes et les interactions indirectes semblent impacter seulement indirectement la gamme d’hôtes des parasitoïdes de pucerons via une modulation de la fitness et/ou taux de parasitisme. Chaque environnement étant différent, l’'étude de l'impact des facteurs écologiques sur la gamme d'hôtes des parasitoïdes est déterminante ; ce travail de thèse a permis de mieux comprendre certains mécanismes impliqués dans le fonctionnement des communautés de parasitoïdes dans les écosystèmes, ainsi que dans l’optimisation possible de programmes de lutte biologique. / Parasitoids are insects whose adult females deposit eggs in, on or near hosts and immatures stages develop by host consumption. They are involved in host population regulation and are largely used in biological control to reduce the damages caused by pests in agroecosystems. Their ability to control pest populations mainly depends on their host range i.e., the number of host species enabling offspring production. The parasitoid host range has been largely studied and may depend on its ability to localize, select and sting their hosts (behavioral host range) and/or its ability to consume and circumvent the hosts physiological defenses (physiological host range). However, each ecosystem has his own biotic and abiotic characteristics that can modulate both behavioral and physiological traits of parasitoids but they implication in the host range modulation have rarely been tested. In this context, the objective of my thesis was to evaluate the impact of different ecological factors on parasitoid host ranges. More specifically, I studied the impact of (i) the genetic bottleneck due to the introduction of small parasitoid population in a new area (through classical biological control notably), (ii) the host and host plant phylogenies, (iii) the bottom-up effects of drought stress, (iv) the relationship between the quality of the host and its ability to produce food for the parasitoid and (v) the parasitoid-mediated indirect interactions between unsuitable and suitable hosts, on the aphid parasitoid host range (high implication in biological control). We demonstrated that the aphids and host plant phylogenies are strongly involved in shaping the ecological host range of parasitoids whereas the other factors tested may only modulate the parasitoid fitness and parasitism rate; which may, finally, indirectly modulate the parasitoid host range. Studied the impact of ecological factors on parasitoid host range seems determinant; this thesis enables to better understand some mechanisms involved in parasitoid community functioning and to potentially optimize biological control programs.
155

Isolation and characterization of Diuraphis noxia induced sequences from wheat line PI 294994

Loots, Shilo 23 June 2005 (has links)
Please read the abstract in the section 00front of this document / Dissertation (MSc (Genetics))--University of Pretoria, 2002. / Genetics / unrestricted
156

Molecular interactions among soybean aphids and aphid-resistant soybean

Stewart, Ashley January 2019 (has links)
No description available.
157

Population Genetics of Soybean Aphid: Elaborating Species Specific SNPs to test Bottleneck and Migration Hypotheses across North-central US and Canada

Orantes, Lucia C. 20 October 2011 (has links)
No description available.
158

Factors affecting the population dynamics of the green peach aphid, Myzus persicae (Sulzer), on flue-cured tobacco in Virginia

Reed, T. David January 1987 (has links)
The temperature-dependent development of red and green morphs of the green peach aphid, Myzus persicae (Sulzer), was compared on flue-cured tobacco, Nicotiana tabacum (L.), at moderate to high constant temperatures in the laboratory. The red morph was found to develop faster and reproduce more than the green morph at temperatures that promoted the most rapid population growth of either morph. In addition, mean longevity of the green morph was increasingly and significantly shorter than the red morph as temperature increased above the mutual optimum temperature (25 °C) for population increase. Study of the growth of GPA populations on commercial flue-cured tobacco farms in Virginia indicated the initial GPA population is highly aggregated. As the population increases, it becomes increasingly more randomly dispersed within the field. The typical pattern of temporal development of GPA was a bimodal distribution with the greater proportion of individuals occurring after topping of the crop. Cumulative proportional population growth models using degree-days were able to adequately describe growth of populations only on individual farms. Study of the within-plant distribution of GPA found that populations developed colonies of greatest intensity on the youngest leaves. The proportion of the total GPA population found on each leaf occurring on the lower leaf surface decreased with ascending leaf position. In addition, the proportion of the total plant population found on the lower leaves was highest as the crop approached the topping stage. / M.S.
159

Relationship of the apple aphis and other insects to the dissemination of fire blight in apple orchards, with a view to methods of blight control

DuShane, James Ross January 1916 (has links)
Our present knowledge, as indicated by the above data, proves that fire blight is due to a specific organism, a bacterium known in science as Bacillus amylovorus, which manifests itself in the following ways: 1. Blossom blight, due to the bacterial infecting the nectary of the flower and multiplying therein, later passing down into the stem by way of the ovary and pedicel. Apparent by the browning of the flowers, which later become blackened. 2. Twig blight, due to inoculation infections through wounds made by insects or other agencies on the young and tender shoots, blighting from the tips downward, the leaves turning brown and appearing as though scorched by fire. 3. Fruit blight, due to the progress of the bacteria up the pedicel into the pulp of the fruit; appearing as brownish or much darkened areas, later involving the entire fruit. 4. Canker blight, due to the entering of the larger branches by bacteria, conveyed by insect, bird, or mechanical agents, or by the bacillus working back from infected twigs, fruit-spurs, or water-sprouts. These cankers vary in size from barely visible areas to a girdling of the entire limb; they appear roughened and depressed with a distinct line separating the canker from the apparently healthy tissue. They are called "hold-over cankers." 5. Collar blight is nothing more than canker blight which attacks the base of the trunk usually through an infected water-sprout, borers, or mechanical injury. Trees afflicted with collar blight soon take on the sickly appearance of half starved trees, prematurely defoliating (partially or wholly), and finally dying. 6. Leaf blight, due largely to insect injury, the majority of infections the margin, either lateral or terminal, although central lesions are found. The blighted portion of the leaf being a light or yellowish brown with a faint purplish border at the advancing edge, which when active shows a narrow watery zone. During the warm sunny days soon after rains, when the trees are in blossom and the pollen gathering insects are busy visiting the flowers, and the hold-over cankers are exuding drops of the blight bacterial, fire blight begins its havoc. Insects come in contact with this gummy substance and later visit the blossoms, thereby inoculating the flowers with the active organism, blossom blight resulting. Bees are awarded first place in spreading the blight to the flowers but flies and all other insects which visit the bloom are also liable to spread the germ. Later on in the season, as long as the tree is in a vigorous stage of growth, the aphids, ants, leaf hoppers, borers, beetles, and in fact any of the biting or sucking insects which inhabit the apple tree, may spread the organism to the succulent tissue, causing twig blight, fruit blight, leaf blight, or body blight. It is a fact that the insect, which in one section of the country is most troublesome in disseminating blight-bacillus, may not be so important an agent in another section. Different varieties of apple trees may also vary in different sections as to their powers of resistance or susceptibility; the York Imperial being listed as a susceptible variety in Pennsylvania and Virginia while in West Virginia it seems to be quite resistant. We cannot control weather conditions which play so important a part in the spread of blight. The weather may put a tree in a responsive or susceptible condition to inoculation and may also control insect life to a great extent. And it is indeed difficult to try to "harden up" a tree by the application of phosphate and potash fertilizers and by the discontinuing of cultivation, especially when the soil is strong and rains are frequent. Hence the more practical methods must be followed: 1. Fight the insects which spread the disease. Spray with nicotine sulphate or some other tobacco extracts in combination with the early scab or codling moth sprays. Where "Black leaf 40" is used, the recommended strength is 1 to 800 parts of water. 2. Cut out the source of infection,- the hold over cankers--cutting back an inch or two into healthy bark, and disinfect the wound with bichloride of mercury (1-1000). Prune out all blighted branches and if possible cut out all blighted twigs, cutting back several inches into the healthy wood. A severe winter often kills the germs in the twigs. All the waste material should be hauled out of the orchard and burned. 3. It is well to discontinue cultivation and application of manure or nitrogenous fertilizers as soon as blight its appearance. 4. The trees are most susceptible to the attack when planted in low wet ground; hence drain the low spots in the orchard. Many bulletins have stated that winter pruning is inducive to wood and thus favors fire blight. Little attention should be paid to such recommendations for we need trees with good growth which will carry a crop of fruit and allow the sun to penetrate throughout the tree and color up the apples. Many fruit growers have bearing orchards and are not anticipating new ones, so to such,the talk of susceptible and resistant varieties means little. Then too, some of the susceptible varieties are the best commercial apples to raise, and when such is the case it means careful inspection for the hold-over cankers. It is however well to pay some attention to this fact when planting an orchard. What is needed badly is community spirit or cooperation in this difficult work of controlling fire blight. For if one's neighbor does not keep the disease out of his orchard, it is sure to spread to the adjoining orchard. So everyone should "pull together" and control blight which has and is now causing the apple grower heavy losses. / Master of Science
160

Effect of predators on population dynamics of green peach aphid on flue-cured tobacco in Virginia

Hamid, Mohd Norowi Bin January 1987 (has links)
The effects of indigenous predators on green peach aphid (GPA), Myzus persicae (Sulzer), populations on flue-cured tobacco were evaluated in 1985 and 1986. The most common GPA predators found on tobacco were convergent lady beetle (CLB) (Hippodamia convergens), syrphid flies, Geocoris spp., Jalysus wackhimi, Nabis spp., Chrysopa spp., Micromus sp., and several other species coccinellids. However, CLB was the only predator that had a numerical response to increasing GPA density on tobacco. In the laboratory, the minimum number of GPA required to initiate reproduction in CLB, and the conversion rates were two factors that determined the oviposition rate of CLB. In fields, CLB demonstrated a sigmoid curve predator-prey relationship. CLB did not show a linear relationship until GPA populations reached a certain density. Furthermore, CLB did not show a response when GPA density was above the satiation point. Although CLB were able to reduce GPA population growth, they were not able to maintain GPA populations below the economic injury level. Two factors probably limited the success of CLB to control GPA populations on flue-cured tobacco: 1.) the glandular trichomes of tobacco which produced gummy exudates, and 2.) the satiation point of CLB when GPA populations were very high. In addition, interplanting tobacco with clover increased the number of syrphid fly larvae on tobacco. Likewise, tobacco interplanted with sunflowers had increased big-eyed bug, populations, and tobacco-alfalfa and tobacco-tobacco plots had higher stilt bug populations on tobacco. / Master of Science

Page generated in 0.0885 seconds