Spelling suggestions: "subject:"aplicaciones dde lipschitz"" "subject:"aplicaciones dde lifschitz""
1 |
Lipschitz Structure of Metric and Banach SpacesQuilis Sandemetrio, Andrés 04 December 2023 (has links)
[ES] Desde el comienzo de la Teoría de Espacios de Banach, el estudio de los subespacios complementados y no complementados ha sido uno de los principales temas del área. Específicamente, en espacios de Banach no separables, han habido grandes esfuerzos en construir un marco teórico para describir la estructura de subespacios linealmente complementados en espacios de Banach. Concepctos clásicos como la Propiedad del Complemento Separable, Resoluciones Proyectivas de la Identidad, y la Propiedad de Plichko han sido y continúan siendo estudiadas en esta disciplina. En igual medida, las aplicaciones de Lipschitz en espacios de Banach también han jugado un papel importante en el desarrollo de la teoría. Cuestiones como la clasificación de Lipschitz de los espacios de Banach, la diferenciabilidad de las funciones de Lipschitz, o la existencia de retracciones de Lipschitz a subconjuntos y subespacios de espacios de Banach, son líneas de investigación activas con abundantes resultados y aplicaciones. En esta tesis analizamos la estructura de retractos de Lipschitz en espacios métricos y espacios de Banach no separables, de forma análoga a la teoría de complementación lineal en espacios de Banach. También discutimos la conexión de este tema con el progreso actual en el estudio de la estructura de los espacios de Lipschitz-free, y con el problema de la existencia de operadores de extensión lineales para funciones de Lipschitz. En primer lugar, generalizamos algunas herramientas clásicas de la teoría lineal al marco no lineal: Definimos el concepto de esqueletos retractivos de Lipschitz como una generalización a los esqueletos proyectivos. Como aplicación de estas nociones, demostramos que el espacio de Lipschitz-free asociado a un espacio de Banach con la propiedad de Plichko tiene a su vez la propiedad de Plichko. Utilizamos también los esqueletos retractivos de Lipschitz para caracterizar aquellos espacios métricos cuyo espacio de Lipschitz-free tiene la propiedad de Plichko con medidas de Dirac, y mostramos que el espacio de Lipschitz-free asociado a cualquier R-árbol es 1-Plichko con moléculas elementales. A continuación, pasamos a definir la Propiedad del Retracto de Lipschitz (α, β) (o la Lipschitz RP(α, β)) para un par de cardinales infinitos α ≤ β. Esta es la propiedad no lineal análoga a la clásica Propiedad del Complemento. Observamos que los espacios C(K) tiene la Lipschitz RP(ℵ0, ℵ0), lo cual implica que sus espacios de Lipschitz-free asociados poseen la Propiedad del Complemento Separable. Siguiendo con el estudio previo, construimos, para cada cardinal infinito Λ, un espacio métrico completo sin la Lipschitz RP(Λ, Λ)). En el caso numerable, podemos mejorar este resultado produciendo un espacio métrico completo que satisface una propiedad más fuerte que la negación de la Lipschitz RP(ℵ0, ℵ0): Todo subconjunto separable con almenos dos puntos no es un retracto de Lipschitz. Finalmente, generalizamos un resultado de Heinrich y Mankiewicz al marco no lineal al mostrar que en cada espacio métrico M, todo subconjunto está contenido en otro subconjunto con el mismo carácter de densidad que además admite un operador lineal de extensión de funciones Lipschitz. / [CA] Des del principi de la Teoria d'Espais de Banach, l'estudi dels subespais complementats i no complementats ha estat un dels principals temes de l'àrea. Específicament, en espais de Banach no separables, hi ha hagut un gran esforç de construir un marc teòric per descriure l'estructura de subespais linealment complementats en espais de Banach. Conceptes clàssics com la Propietat del Complement Separable, Resolucions Projectives de la Identitat, i la Propietat de Plichko han estat i continuen sent estudiades en aquesta disciplina. En igual mesura, les aplicacions de Lipschitz en espais de Banach també han jugat un paper important en el desenvolupament de la teoria. Qüestions com la classificació de Lipschitz dels espais de Banach, la diferenciabilitat de les funcions de Lipschitz, o l'existència de retraccions de Lipschitz a subconjunts i subespais d'espais de Banach, són línies d'investigació actives amb abundants resultats i aplicacions. En aquesta tesi analitzem l'estructura de retractes de Lipschitz en espais mètrics i espais de Banach no separables, de manera anàloga a la teoria de complementació lineal en espais de Banach. També discutim la connexió d'aquest tema amb el progrés actual en l'estudi de l'estructura dels espais de Lipschitz-free, i amb el problema de l'existència d'operadors d'extensió lineals per a funcions de Lipschitz. En primer lloc, generalitzem algunes eines clàssiques de la teoria lineal al marc no lineal: Definim el concepte d'esquelets retractius de Lipschitz com una generalització dels esquelets projectius. Com aplicació d'aquestes nocions, demostrem que l'espai de Lipschitz-free associat a un espai de Banach amb la propietat de Plichko té la propietat de Plichko. Utilitzem també els esquelets retractius de Lipschitz per a caracteritzar aquells espais mètrics que generen espais de Lipschitz-free amb la propietat de Plichko amb mesures de Dirac, i mostrem que l'espai de Lipschitz-free associat a qualsevol R-arbre és 1-Plichko amb molècules elementals. A continuació, passem a definir la Propietat del Retracte de Lipschitz (α, β) (o la Lipschitz RP(α, β)) per a un parell de cardinals infinits α ≤ β. Aquesta és la propietat no lineal anàloga a la clàssica Propietat del Complement. Observem que els espais C(K) tenen la Lipschitz RP(ℵ0, ℵ0), la qual cosa implica que els espais de Lipschitz-free associats posseeixen la Propietat del Complement Separable. Seguint amb l'estudi previ, construïm, per a cada cardinal infinit Λ, un espai mètric complet sense la Lipschitz RP(Λ, Λ). En el cas numerable, podem millorar aquest resultat produint un espai mètric complet que satisfà una propietat més forta que la negació de la Lipschitz RP(ℵ0, ℵ0): Tot subconjunt separable amb almenys dos punts no és un retracte de Lipschitz. Finalment, generalitzem un resultat de Heinrich i Mankiewicz al marc no lineal al demostrar que en cada espai mètric M, tot subconjunt està contingut en altre subconjut amb el mateix caràcter de densitat que a més admet un operador lineal d'extensió de funcions Lipschitz. / [EN] Since the inception of Banach Space Theory, the study of complemented and uncomplemented subspaces of Banach spaces has been one of the main themes of the area. Specifically, in non-separable Banach spaces, there have been many efofrts in constructing a theoretical framework to describe the linear complementation structure of Banach spaces. Classical concepts such as the Separable Complementation Property, Projectional Resolutions of the Identity, and the Plichko Property have been and continue to be studied in this area. Similarly, Lipschitz maps between Banach spaces have also played a main role in the development of the theory. Questions such as the Lipschitz classification of Banach spaces, difefrentiability of Lipschitz maps, or the existence of Lipschitz retractions onto subsets and subspaces of Banach spaces, have been and continue to be active topics of research with a wealth of results and applications. In this thesis we analyse the Lipschitz retractional structure of non-separable metric and Banach spaces, as an analogous theory to the linear complementation one in Banach spaces. We also discuss the connection of this topic with the ongoing program to study the structure of Lipschitz-free Banach spaces, and to the problem of finding bounded linear extension operators for Lipschitz functions. First, we generalize some classical tools of the linear theory to the non-linear setting: We define the concept of Lipschitz retractional skeletons as a generalization of Projectional skeletons. As applications of these concepts, we show that the Lipschitz-free space of a Plichko Banach space is again Plichko. We also use Lipschitz retractional skeletons to characterize metric spaces whose Lipschitz-free spaces enjoy the Plichko property witnessed by Dirac measures, and we show that the Lipschitz-free space of any R-tree is 1-Plichko witnessed by molecules. Next, we pass on to defining the (α, β) Lipschitz Retraction Property (Lipschitz RP(α, β) for short) for a pair of infinite cardinals α ≤ β. These are the non-linear analogues to the classical Complementation Properties. We observe that C(K) spaces enjoy the Lipschitz RP(ℵ0, ℵ0), which in turn implies that their associated Lipschitz-free space satisfy the Separable Complementation Property. As a continuation of the previous study, we construct, for every infinite cardinal Λ, a complete metric space which fails the Lipschitz RP(Λ, Λ). In the countable case, we are able to produce a complete metric space, called the skein space, with a stronger property than the negation of the Lipschitz RP(ℵ0, ℵ0): Every separable subset of the skein space with at least two points fails to be a Lipschitz retract. Finally, we generalize a result of Heinrich and Mankiewicz to the non-linear setting, by showing that for any metric space M, every subset is contained in another subset of the same density character which admits a bounded linear extension operator for the space of Lipschitz functions. / Quilis Sandemetrio, A. (2023). Lipschitz Structure of Metric and Banach Spaces [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/200447
|
Page generated in 0.0674 seconds