• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

INTERACTIONS BETWEEN STRUCTURES IN THE APPALACHIAN AND OUACHITA FORELAND BENEATH THE GULF COASTAL PLAIN

Surles, Donald Matthew 01 January 2007 (has links)
In Alabama, the Paleozoic Appalachian thrust belt plunges southwest beneath the Mesozoic-Cenozoic Gulf Coastal Plain. In Arkansas, the Paleozoic Ouachita thrust belt plunges southeast beneath the Coastal Plain. The strikes of the exposed thrust belts suggest an intersection beneath the Coastal Plain. Well data and seismic reflection profiles confirm the strike and intersection of the thrust belts, and provide information to determine the structure and general stratigraphy of each thrust belt. In east-central Mississippi, the Appalachian thrust belt curves from the regional northeast trace to westward at the intersection with the southeastern terminus of the Ouachita thrust belt, to northwest where Ouachita thrust sheets are in the Appalachian footwall, and farther west, to a west-southwest orientation. At the intersection, the frontal Appalachian fault truncates the Appalachian thrust sheets. The Appalachian thrust sheets are detached in Lower Cambrian strata and contain a distinctive Cambrian-Ordovician passive-margin carbonate succession. The Ouachita thrust sheets are detached above the carbonate succession and contain a thick Carboniferous clastic succession. The Appalachian thrust sheets east of the intersection rest on an autochthonous footwall with a thin Lower Cambrian sedimentary cover above Precambrian crystalline basement. To the west, the Appalachian thrust sheets rest on an allochthonous footwall of thick Ouachita thrust sheets. The top of Precambrian crystalline basement rocks dips southwestward beneath the Ouachita thrust belt; large-magnitude down-to-southwest basement faults enhance the deepening. Appalachian thrust sheets on the northeast are detached above relatively shallow basement, but to the west, are detached above thick Ouachita thrust sheets, which overlie deeper basement. The structure of the basement reflects the Iapetan rifted margin, where the northwest-striking Alabama-Oklahoma transform bounds the southwest side of the Alabama promontory. The trends of basement structures and subsidence toward the Ouachita thrust belt parallel the Alabama-Oklahoma transform. Shallower basement and synrift basement grabens underlie the northeast-striking Appalachian thrust belt. The curves in strike and along-strike change in footwall structure of the Appalachian thrust belt reflect controls by basement structure and by the structure of the Ouachita thrust belt.
2

PALINSPASTIC RECONSTRUCTION AROUND A THRUST BELT RECESS: AN EXAMPLE FROM THE APPALACHIAN THRUST BELT IN NORTHWESTERN GEORGIA

Cook, Brian Stephen 01 January 2010 (has links)
In a well-defined subrecess in the Appalachian thrust belt in northwestern Georgia, two distinct regional strike directions intersect at approximately 50°. Fault intersections and interference folds enable tracing of both structural strikes. Around the subrecess, tectonically thickened weak stratigraphic layers—shales of the Cambrian Conasauga Formation—accommodated ductile deformation associated with the folding and faulting of the overlying Cambrian–Ordovician regional competent layer. The structures in the competent layer are analogous to those over ductile duplexes (mushwads) documented along strike to the southwest in Alabama. The intersection and fold interference exemplify a long-standing problem in volume balancing of palinspastic reconstructions of sinuous thrust belts. Cross sections generally are constructed perpendicular to structural strike, parallel to the assumed slip direction. An array of cross sections around a structural bend may be restored and balanced individually; however, restorations perpendicular to strike across intersecting thrust faults yield an imbalance in the along-strike lengths of frontal ramps. The restoration leads to a similar imbalance in the surface area of a stratigraphic horizon, reflecting volume imbalance in three dimensions. The tectonic thickening of the weak-layer shales is evident in palinspastically restored cross sections, which demonstrate as much as 100% increase in volume over the restored-state cross sections. The cause of the surplus shale volume is likely prethrusting deposition of thick shale in a basement graben that was later inverted. The volume balance of the ductile duplex is critical for palinspastic reconstruction of the recess, and for the kinematic history and mechanics of the ductile duplex.

Page generated in 0.0768 seconds