• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of the early events in the interaction between Venturia inaequalis and the susceptible Golden Delicious apple (Malus x domestica Borkh.)

Hüsselmann, Lizex Hollenbach Hermanus January 2014 (has links)
Philosophiae Doctor - PhD / Apple (Malus x domestica) production in the Western Cape, South Africa, is one of the major contributors to the gross domestic product (GDP) of the region. The production of apples is affected by a number of diseases. One of the economically important diseases is apple scab that is caused by the pathogenic fungus, Venturia inaequalis. Research to introduce disease resistance ranges from traditional plant breeding through to genetic manipulation. Parallel disease management regimes are also implemented to combat the disease, however, such strategies are increasingly becoming more ineffective since some fungal strains have become resistant to fungicides. The recently sequenced apple genome has opened the door to study the plant pathogen interaction at a molecular level. This study reports on proteomic and transcriptomic analyses of apple seedlings infected with Venturia inaequalis. In the proteomic analysis, two-dimensional gel electrophoresis (2-DE) in combination with mass spectrometry (MS) was used to separate, visualise and identify apple leaf proteins extracted from infected and uninfected apple seedlings. Using MelanieTM 2-DE Gel Analysis Software version 7.0 (Genebio, Geneva, Switzerland), a comparative analysis of leaf proteome expression patterns between the uninfected and infected apple leaves were conducted. The results indicated proteins with similar expression profiles as well as qualitative and quantitative differences between the two leaf proteomes. Thirty proteins from the apple leaf proteome were identified as differentially expressed. These were selected for analysis using a combination of MALDI-TOF and MALDI-TOF-TOF MS, followed by database searching. Of these spots, 28 were positively identified with known functions in photosynthesis and carbon metabolism (61%), protein destination and storage (11%), as well as those involved in redox/response to stress, followed by proteins involved in protein synthesis and disease/defence (7%), nucleotide and transport (3%). RNA-Seq was used to identify differentially expressed genes in response to the fungal infection over five time points namely Day 0, 2, 4, 8 and 12. cDNA libraries were constructed, sequenced using Illumina HiScan SQTM and MiSeqTM instruments. Nucleotide reads were analysed by aligning it to the apple genome using TopHat spliceaware aligner software, followed by analysis with limma/voom and edgeR, R statistical packages for finding differentially expressed genes. These results showed that 398 genes were differentially expressed in response to fungal infection over the five time points. These mapped to 1164 transcripts in the apple transcripts database, which were submitted to BLAST2GO. Eighty-six percent of the genes obtained a BLAST hit to which 77% of the BLAST hits were assigned GO terms. These were classed into three ontology categories i.e. biological processes, molecular function and cellular components. By focussing on the host responsive genes, modulation of genes involved in signal perception, transcription, stress/detoxification, defence related proteins, transport and secondary metabolites have been observed. A comparative analysis was performed between the Day 4 proteomic and Day 4 transcriptomic data. In the infected and uninfected apple leaf proteome of Day 4, we found 9 proteins responsive to fungal infection were up-regulated. From the transcriptome data of Day 4, 162 genes were extracted, which mapped to 395 transcripts in the apple transcripts. These were submitted to BLAST2GO for functional annotation. Proteins encoded by the up-regulated transcripts were functionally categorised. Pathways affected by the up-regulated genes are carbon metabolism, protein synthesis, defence, redox/response to stress. Up-regulated genes were involved in signal perception, transcription factors, stress/detoxification, defence related proteins, disease resistance proteins, transport and secondary metabolites. We found that the same pathways including energy, disease/defence and redox/response to stress were affected for the comparative analysis. The results of this study can be used as a starting point for targeting host responsive genes in genetic manipulation of apple cultivars.
2

Elucidation of the Function of Dihydrochalcones in Apple

Miranda Chávez, Simón David 05 April 2023 (has links)
Dihydrochalcones (DHCs) are specialised metabolites with a limited natural distribution, found in significant amounts in Malus x domestica Borkh. (cultivated apple) and wild Malus species. Among them, M. x domestica accumulates significant amounts of phloridzin, whilst trilobatin and sieboldin are abundant in some wild relatives. DHCs have demonstrated a wide range of bioactive properties in biomedical models. Some DHCs have also been reported to act as flavour enhancers. Phloridzin may act as an anti-diabetic compound by blocking sodium-linked glucose transport and renal reabsorption of glucose in kidneys. Despite the protective effects reported in mammal models, little is known about how these metabolites are biosynthesised and what is their function in planta, where it has been hypothesised a role for phloridzin in plant growth. The biosynthetic pathway leading to DHC formation has been proposed in apple, and some steps have been characterised recently. DHC pathway diverts from the main phenylpropanoid pathway most probably from 4-coumaroyl-CoA by the action of a yet unknown reductase that would produce 4-dihydrocoumaroyl-CoA. Then, chalcone synthase (CHS) catalyses its condensation to form phloretin. Phloretin can be directly glycosylated at position 2′- or 4′ by the previously characterised 2′- and 4′-O-UDP-glycosyltransferases PGT1 and PGT2, to produce phloridzin or trilobatin, respectively. However, sieboldin has been postulated to derive from hydroxylation in position 3 of phloretin before been glycosylated, and the key responsible enzyme producing 3-hydroxyphloretin has not been yet discovered. The main aim of this PhD proposal was to provide a better understanding of the physiological functions of DHCs in apple, as well as to contribute to the elucidation of the biosynthetic pathway as the molecular basis for future genetic engineering in apple. Towards this aim, functional characterisation was conducted in MdPGT1 knockdown apple lines by RNAi silencing and CRISPR/Cas9 genome editing to assess the physiological effect of targeting a key biosynthetic gene involved in phloridzin biosynthesis. In addition, molecular, transcriptomic and metabolomic analyses were integrated to evaluate candidate genes accounting for 3-hydroxylase activity involved in DHC biosynthesis in wild Malus species accumulating sieboldin. Moreover, a de novo transcriptome assembly was carried out in an intergeneric hybrid between M. x domestica and Pyrus communis L. known to accumulate intermediate levels of DHCs compared to apple, in order to identify additional genes potentially involved in DHC pathway. We compared the physiological effect of reducing phloridzin through PGT1 knockdown by RNAi silencing and CRISPR/Cas9 genome editing. Knockdown lines exhibited characteristic impairment of plant growth and leaf morphology as reported in literature, whereas genome edited lines exhibited normal growth despite reduced foliar phloridzin. Bioactive brassinosteroids and gibberellins were found to be key players involved in the contrasting effects on growth observed following phloridzin reduction. Moreover, a cytochrome P450 from wild M. toringo (K. Koch) Carriere syn. sieboldii Rehder, and M. micromalus Makino was identified as dihydrochalcone 3-hydroxylase (DHCH), proving to produce 3-hydroxyphloretin and sieboldin in yeast. Different DHCH allele isoforms found in domesticated apple and M. toringo and M. micromalus correlated with sieboldin accumulation in a Malus germplasm collection. Finally, the assembled de novo transcriptome of the intergeneric apple/pear hybrid integrated to functional annotation and metabolomic analysis resulted in the identification of genes potentially involved in DHC biosynthesis, providing the basis for future biochemical characterisation. Altogether these results contribute to get insight into the roles of DHCs in apple and to illustrate how CRISPR/Cas9 genome editing can be applied to dissect the contribution of genes involved in phloridzin biosynthesis in apple. Furthermore, the present PhD thesis contributes to the state-of-the-art by elucidating key missing steps in the biosynthesis of DHCs, which could be relevant for future establishment of genetic engineered lines that contribute to assess physiological effects of altering DHCs content, as well as to establish heterologous expression systems to produce de novo DHCs.

Page generated in 0.0477 seconds