Spelling suggestions: "subject:"apples -- hutrition"" "subject:"apples -- elutrition""
1 |
The effect of different water and nutrient management strategies on the calcium content in apple fruitJoubert, Jorika 03 1900 (has links)
Thesis (MscAgric (Horticulture))--University of Stellenbosch, 2007. / Production of quality fruit is the main aim in horticultural crops. Numerous research reports
stress the important role of calcium (Ca) in maintaining firmness and preventing the
development of physiological disorders in fruit. This study focused on the effect of water and
nutrient management strategies, rootstocks and foliar Ca applications on fruit Ca content.
Final Ca content/concentration in apple fruit at harvest did not differ significantly between
treatments water with micro jets (hand nutrition), water and nutrients with fertigation, or
water and nutrients with pulsating drip when applied to ‘Brookfield Gala’ trees in third leaf,
on two rootstocks (M793 and M7).
In the second trial, three Ca levels were applied to ‘Brookfield Gala’ trees through a pulsating
drip system during three phenological periods to evaluate the effect on Ca uptake of the fruit.
During the second season, application of high Ca levels for the period full bloom to harvest
gave a higher fruit Ca concentration than with applications of standard or low Ca.
|
2 |
Nutrient requirement and distribution of intensively grown ‘Brookfield Gala’ apple treesKangueehi, Grace Nandesora 03 1900 (has links)
Thesis (MscAgric (Horticulture))--University of Stellenbosch, 2008. / ‘Brookfield Gala’ apple trees were planted out in July 2003 in a Dundee soil form, consisting
of well-aerated sandy loam soil. During the first 12 months trees received young tree
solutions high in nitrogen. The nutrient solution of the 2nd leaf trees was based on a yield
estimation of 10 ton. ha-1 plus 30%. Nutrient solutions for the 3rd leaf trees were based on 25
ton. ha-1 yield estimations and adapted upwards.
Seasonal uptake and distributions were determined for macro and micro elements, using twoand
three-year-old apple trees during the seasons 2004/2005 and 2005/2006. In the bearing
apple trees the macro nutrient accumulated rapidly from late winter to late autumn. Prior to
leaf drop most of the N, P, S, Mg and a small portion of K were redistributed back into the
permanent parts of the tree. On the other hand, all Ca in the leaves was lost through leaf drop.
Apple fruit contains comparatively large quantities (±60.2%) of K, which are removed during
harvest.
Guidelines for minimum and maximum nutritional requirements based on the amount
necessary to produce 1 kg fruit were determined. For the 3rd leaf trees the minimum macro
nutrient requirements (g. kg-1 yield) of N, P, K, Ca, Mg and S were ±1.7, ±0.3, ±2.3, ±0.5,
±0.2 and ±0.2, respectively. The maximum nutrient requirements (g. kg-1 yield) for N, P, K,
Ca, Mg and S were ±2.6, ±0.4, ±3.3, ±1.9, ±0.4 and ±0.2, respectively. For the 3rd leaf trees
the minimum micro nutrient requirements (mg. kg-1 yield) of Na, Mn, Fe, Cu, Zn, B and Mo
were ±75.1, ±1.3, ±28.7, ±0.9, ±3.0, ±5.7 and ±0.3, respectively. The maximum nutrient
requirements (mg. kg-1 yield) of Na, Mn, Fe, Cu, Zn, B and Mo were ±102.9, ±7.8, ±32.6,
±1.1, ±6.5, ±7.6 and ±0.3, respectively.
Labelled N uptake and distribution for two- and three-year-old apple trees were also
determined during the same seasons. The labelled N uptake and distribution results indicated
that there was a low labelled N uptake in the initial growth stages, suggesting the importance
of internal N reserves for plant development at the beginning of the season. In the active
growing period more than 60% of the labelled N was found in the new growth. Uptake
efficiency improved as the trees grew older. The effect of different nutrient levels on tree growth, yield and fruit quality was assessed:
lower (80%) than the standard (100%) and three higher (120%, 140% and 160%). Results
indicated that different nutrient levels had no effect on yield, blush or TSS during the 18
months of application over two bearing seasons. The application of biological products
(humic acid, and compost plus compost extract) over a period of 18 months had a significant
influence on the TSS, malic acid and citric acid concentrations. A tendency towards an
increase in total fine root number and length occured with the addition of biological
ameliorant.
|
Page generated in 0.0889 seconds