• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Review of Immunotherapy Classification: Application Domains, Datasets, Algorithms and Software Tools from Machine Learning Perspective

Mahmoud, Ahsanullah Y., Neagu, Daniel, Scrimieri, Daniele, Abdullatif, Amr R.A. 13 December 2022 (has links)
Yes / Immunotherapy treatments can be essential sometimes and a waste of valuable resources in other cases, depending on the diagnosis results. Therefore, researchers in immunotherapy need to be updated on the current status of research by exploring: application domains e.g. warts, datasets e.g. immunotherapy, classifiers or algorithms e.g. kNN and software tools. The research objectives were: 1) to study the immunotherapy-related published literature from a supervised machine learning perspective. In addition, to reproduce immunotherapy classifiers reported in research papers. 2) To find gaps and challenges both in publications and practical work, which may be the basis for further research. Immunotherapy, diabetes, cryotherapy, exasens data and ”one unbalanced dataset” are explored. The results are compared with published literature. To address the found gaps in further research: novel experiments, unbalanced studies, focus on effectiveness and a new classifier algorithm are suggested.
2

Managing the memory hierarchy in GPUs

Dublish, Saumay Kumar January 2018 (has links)
Pervasive use of GPUs across multiple disciplines is a result of continuous adaptation of the GPU architectures to address the needs of upcoming application domains. One such vital improvement is the introduction of the on-chip cache hierarchy, used primarily to filter the high bandwidth demand to the off-chip memory. However, in contrast to traditional CPUs, the cache hierarchy in GPUs is presented with significantly different challenges such as cache thrashing and bandwidth bottlenecks, arising due to small caches and high levels of memory traffic. These challenges lead to severe congestion across the memory hierarchy, resulting in high memory access latencies. In memory-intensive applications, such high memory access latencies often get exposed and can no longer be hidden through multithreading, and therefore adversely impact system performance. In this thesis, we address the inefficiencies across the memory hierarchy in GPUs that lead to such high levels of congestion. We identify three major factors contributing to poor memory system performance: first, disproportionate and insufficient bandwidth resources in the cache hierarchy; second, poor cache management policies; and third, high levels of multithreading. In order to revitalize the memory hierarchy by addressing the above limitations, we propose a three-pronged approach. First, we characterize the bandwidth bottlenecks present across the memory hierarchy in GPUs and identify the architectural parameters that are most critical in alleviating congestion. Subsequently, we explore the architectural design space to mitigate the bandwidth bottlenecks in a cost-effective manner. Second, we identify significant inter-core reuse in GPUs, presenting an opportunity to reuse data among the L1s. We exploit this reuse by connecting the L1 caches with a lightweight ring network to facilitate inter-core communication of shared data. We show that this technique reduces traffic to the L2 cache, freeing up the bandwidth for other accesses. Third, we present Poise, a machine learning approach to mitigate cache thrashing and bandwidth bottlenecks by altering the levels of multi-threading. Poise comprises a supervised learning model that is trained offline on a set of profiled kernels to make good warp scheduling decisions. Subsequently, a hardware inference engine is used to predict good warp scheduling decisions at runtime using the model learned during training. In summary, we address the problem of bandwidth bottlenecks across the memory hierarchy in GPUs by exploring how to best scale, supplement and utilize the existing bandwidth resources. These techniques provide an effective and comprehensive methodology to mitigate the bandwidth bottlenecks in the GPU memory hierarchy.
3

Sample synopses for approximate answering of group-by queries

Lehner, Wolfgang, Rösch, Philipp 22 April 2022 (has links)
With the amount of data in current data warehouse databases growing steadily, random sampling is continuously gaining in importance. In particular, interactive analyses of large datasets can greatly benefit from the significantly shorter response times of approximate query processing. Typically, those analytical queries partition the data into groups and aggregate the values within the groups. Further, with the commonly used roll-up and drill-down operations a broad range of group-by queries is posed to the system, which makes the construction of highly-specialized synopses difficult. In this paper, we propose a general-purpose sampling scheme that is biased in order to answer group-by queries with high accuracy. While existing techniques focus on the size of the group when computing its sample size, our technique is based on its standard deviation. The basic idea is that the more homogeneous a group is, the less representatives are required in order to give a good estimate. With an extensive set of experiments, we show that our approach reduces both the estimation error and the construction cost compared to existing techniques.
4

Conjunctive Queries with Inequalities Under Updates

Idris, Muhammad, Ugarte, Martín, Vansummeren, Stijn, Voigt, Hannes, Lehner, Wolfgang 15 June 2022 (has links)
Modern application domains such as Composite Event Recognition (CER) and real-time Analytics require the ability to dynamically refresh query results under high update rates. Traditional approaches to this problem are based either on the materialization of subresults (to avoid their recomputation) or on the recomputation of subresults (to avoid the space overhead of materialization). Both techniques have recently been shown suboptimal: instead of materializing results and subresults, one can maintain a data structure that supports efficient maintenance under updates and can quickly enumerate the full query output, as well as the changes produced under single updates. Unfortunately, these data structures have been developed only for aggregate-join queries composed of equi-joins, limiting their applicability in domains such as CER where temporal joins are commonplace. In this paper, we present a new approach for dynamically evaluating queries with multi-way θ-joins under updates that is effective in avoiding both materialization and recomputation of results, while supporting a wide range of applications. To do this we generalize Dynamic Yannakakis, an algorithm for dynamically processing acyclic equi-join queries. In tandem, and of independent interest, we generalize the notions of acyclicity and free-connexity to arbitrary θ-joins. We instantiate our framework to the case where θ-joins are only composed of equalities and inequalities (<, ≤, =, >, ≥) and experimentally compare this algorithm, called IEDyn, to state of the art CER systems as well as incremental view maintenance engines. IEDyn performs consistently better than the competitor systems with up to two orders of magnitude improvements in both time and memory consumption.
5

Model-based Integration of Past & Future in TimeTravel

Khalefa, Mohamed E., Fischer, Ulrike, Pedersen, Torben Bach, Lehner, Wolfgang 10 January 2023 (has links)
We demonstrate TimeTravel, an efficient DBMS system for seamless integrated querying of past and (forecasted) future values of time series, allowing the user to view past and future values as one joint time series. This functionality is important for advanced application domain like energy. The main idea is to compactly represent time series as models. By using models, the TimeTravel system answers queries approximately on past and future data with error guarantees (absolute error and confidence) one order of magnitude faster than when accessing the time series directly. In addition, it efficiently supports exact historical queries by only accessing relevant portions of the time series. This is unlike existing approaches, which access the entire time series to exactly answer the query. To realize this system, we propose a novel hierarchical model index structure. As real-world time series usually exhibits seasonal behavior, models in this index incorporate seasonality. To construct a hierarchical model index, the user specifies seasonality period, error guarantees levels, and a statistical forecast method. As time proceeds, the system incrementally updates the index and utilizes it to answer approximate and exact queries. TimeTravel is implemented into PostgreSQL, thus achieving complete user transparency at the query level. In the demo, we show the easy building of a hierarchical model index for a real-world time series and the effect of varying the error guarantees on the speed up of approximate and exact queries.

Page generated in 0.0941 seconds