Spelling suggestions: "subject:"applied linear algebra"" "subject:"appplied linear algebra""
1 |
A Criterion for the Optimal Design of Multiaxis Force SensorsBicchi, Antionio 01 October 1990 (has links)
This paper deals with the design of multi-axis force (also known as force/torque) sensors, as considered within the framework of optimal design theory. The principal goal of this paper is to identify a mathematical objective function, whose minimization corresponds to the optimization of sensor accuracy. The methodology employed is derived from linear algebra and analysis of numerical stability. The problem of optimizing the number of basic transducers employed in a multi-component sensor is also addressed. Finally, applications of the proposed method to the design of a simple sensor as well as to the optimization of a novel, 6-axis miniaturized sensor are discussed.
|
2 |
Benefits from the generalized diagonal dominance / Prednosti generalizovane dijagonalne dominacijeKostić Vladimir 03 July 2010 (has links)
<p>This theses is dedicated to the study of generalized diagonal dominance and its<br />various beneflts. The starting point is the well known nonsingularity result of strictly diagonally dominant matrices, from which generalizations were formed in difierent directions. In theses, after a short overview of very well known results, special attention was turned to contemporary contributions, where overview of already published original material is given, together with new obtained results. Particulary, Ger•sgorin-type localization theory for matrix pencils is developed, and application of the results in wireless sensor networks optimization problems is shown.</p> / <p><span class="fontstyle0">Ova teza je posvećena izučavanju generalizovane dijagonalne dominacije i njenih brojnih prednosti. Osnovu čini poznati rezultat o regularnosti strogo dijagonalnih matrica,<br />čija su uopštenja formirana u brojnim pravcima. U tezi, nakon kratkog pregleda dobro poznatih rezultata, posebna pažnja je posvećena savremenim doprinosima, gde je dat i pregled već objavljenih autorovih rezultata, kao i detaljan tretman novih dobijenih rezultata. Posebno je razvijena teorija lokalizacije Geršgorinovog tipa generalizovanih karakterističnih korena i pokazana je primena rezultata u problemima optimizacije bežičnih senzor mreža.</span></p>
|
3 |
Novi indikatori stabilnosti za empirijske trofičke mreže / New stability indicators for the empirical food websCvetković Dragana 31 October 2017 (has links)
<p>Ova doktorska disertacija uvodi nov pristup ispitivanju stabilnosti dinamičkih<br />sistema, korišćenjem teorije pseudospektra. Na taj način se postojeći pojam<br />stabilnosti profinjuje pojmom robusne stabilnosti, koji mnogo adekvatnije<br />opisuje realnu ekološku stabilnost. Razvijen je nov matematički alat za<br />izračunavanje indikatora stabilnosti, koji je zatim ilustrovan na primeru dva<br />ekosistema tla, sa po četiri uzorka, u četiri različita stadijuma razvoja.</p> / <p>This doctoral dissertation establishes a novel approach to the stability analysis of<br />dynamical systems, in terms of matrix pseudospectrum. In that manner, the existing<br />concept of stability has undergone essential refinement so as to give birth to the<br />concept of robust stability, which has the ability to capture the ecological stability at a<br />more adequate level. Additionally, within the framework of the dissertation, a new<br />mathematical tool for the stability indicators computation has been developed, which<br />has then been used to illustrate theoretical results in form of two soil ecosystems,<br />each of them sampled four times, all of them observed in four distinct stages of<br />evolution.</p>
|
4 |
Programmation des architectures hétérogènes à l'aide de tâches divisibles ou modulables / Programmation of heterogeneous architectures using moldable tasksCojean, Terry 26 March 2018 (has links)
Les ordinateurs équipés d'accélérateurs sont omniprésents parmi les machines de calcul haute performance. Cette évolution a entraîné des efforts de recherche pour concevoir des outils permettant de programmer facilement des applications capables d'utiliser toutes les unités de calcul de ces machines. Le support d'exécution StarPU développé dans l'équipe STORM de INRIA Bordeaux, a été conçu pour servir de cible à des compilateurs de langages parallèles et des bibliothèques spécialisées (algèbre linéaire, développements de Fourier, etc.). Pour proposer la portabilité des codes et des performances aux applications, StarPU ordonnance des graphes dynamiques de tâches de manière efficace sur l’ensemble des ressources hétérogènes de la machine. L’un des aspects les plus difficiles, lors du découpage d’une application en graphe de tâches, est de choisir la granularité de ce découpage, qui va typiquement de pair avec la taille des blocs utilisés pour partitionner les données du problème. Les granularités trop petites ne permettent pas d’exploiter efficacement les accélérateurs de type GPU, qui ont besoin de peu de tâches possédant un parallélisme interne de données massif pour « tourner à plein régime ». À l’inverse, les processeurs traditionnels exhibent souvent des performances optimales à des granularités beaucoup plus fines. Le choix du grain d’un tâche dépend non seulement du type de l'unité de calcul sur lequel elle s’exécutera, mais il a en outre une influence sur la quantité de parallélisme disponible dans le système : trop de petites tâches risque d’inonder le système en introduisant un surcoût inutile, alors que peu de grosses tâches risque d’aboutir à un déficit de parallélisme. Actuellement, la plupart des approches pour solutionner ce problème dépendent de l'utilisation d'une granularité des tâches intermédiaire qui ne permet pas un usage optimal des ressources aussi bien du processeur que des accélérateurs. L'objectif de cette thèse est d'appréhender ce problème de granularité en agrégeant des ressources afin de ne plus considérer de nombreuses ressources séparées mais quelques grosses ressources collaborant à l'exécution de la même tâche. Un modèle théorique existe depuis plusieurs dizaines d'années pour représenter ce procédé : les tâches parallèles. Le travail de cette thèse consiste alors en l'utilisation pratique de ce modèle via l'implantation de mécanismes de gestion de tâches parallèles dans StarPU et l'implantation ainsi que l'évaluation d'ordonnanceurs de tâches parallèles de la littérature. La validation du modèle se fait dans le cadre de l'amélioration de la programmation et de l'optimisation de l'exécution d'applications numériques au dessus de machines de calcul modernes. / Hybrid computing platforms equipped with accelerators are now commonplace in high performance computing platforms. Due to this evolution, researchers concentrated their efforts on conceiving tools aiming to ease the programmation of applications able to use all computing units of such machines. The StarPU runtime system developed in the STORM team at INRIA Bordeaux was conceived to be a target for parallel language compilers and specialized libraries (linear algebra, Fourier transforms,...). To provide the portability of codes and performances to applications, StarPU schedules dynamic task graphs efficiently on all heterogeneous computing units of the machine. One of the most difficult aspects when expressing an application into a graph of task is to choose the granularity of the tasks, which typically goes hand in hand with the size of blocs used to partition the problem's data. Small granularity do not allow to efficiently use accelerators such as GPUs which require a small amount of task with massive inner data-parallelism in order to obtain peak performance. Inversely, processors typically exhibit optimal performances with a big amount of tasks possessing smaller granularities. The choice of the task granularity not only depends on the type of computing units on which it will be executed, but in addition it will influence the quantity of parallelism available in the system: too many small tasks may flood the runtime system by introducing overhead, whereas too many small tasks may create a parallelism deficiency. Currently, most approaches rely on finding a compromise granularity of tasks which does not make optimal use of both CPU and accelerator resources. The objective of this thesis is to solve this granularity problem by aggregating resources in order to view them not as many small resources but fewer larger ones collaborating to the execution of the same task. One theoretical machine and scheduling model allowing to represent this process exists since several decades: the parallel tasks. The main contributions of this thesis are to make practical use of this model by implementing a parallel task mechanism inside StarPU and to implement and study parallel task schedulers of the literature. The validation of the model is made by improving the programmation and optimizing the execution of numerical applications on top of modern computing machines.
|
5 |
Generalizovana dijagonalna dominacija za blok matrice i mogućnosti njene primene / Generalized diagonal dominance for block matrices and possibilites of its applicationDoroslovački Ksenija 06 May 2014 (has links)
<p>Ova doktorska disertacija izučava matrice zapisane u blok formi. Ona<br />sistematizuje postojeća i predstavlja nova tvrđenja o osobinama takvih matrica,<br />koja se baziraju na ideji generalizovane dijagonalne dominacije. Poznati<br />rezultati u tačkastom slučaju dobra su osnova za blok generalizacije, koje su<br />izvedene na dva različita načina, prvi zbog svoje jednostavnije primenljivosti,<br />a drugi zbog obuhvatanja šire klase matrica na koju se rezultati odnose.</p> / <p>This thesis is related to matrices written in their block form. It systematizes known and<br />represents new knowledge about properties of such matrices, which is based on the idea<br />of generalized diagonal dominance. Known results in the point case serve as a good basis<br />for block generalization, which is done in two different ways, the first one because of its<br />simple usability, and the other for capturing wider class of matrices which are treated.</p>
|
6 |
Algorithms for computing the optimal Geršgorin-type localizations / Алгоритми за рачунање оптималних локализација Гершгориновог типа / Algoritmi za računanje optimalnih lokalizacija Geršgorinovog tipaMilićević Srđan 27 July 2020 (has links)
<p>There are numerous ways to localize eigenvalues. One of the best known results is that the spectrum of a given matrix ACn,n is a subset of a union of discs centered at diagonal elements whose radii equal to the sum of the absolute values of the off-diagonal elements of a corresponding row in the matrix. This result (Geršgorin's theorem, 1931) is one of the most important and elegant ways of eigenvalues localization ([63]). Among all Geršgorintype sets, the minimal Geršgorin set gives the sharpest and the most precise localization of the spectrum ([39]). In this thesis, new algorithms for computing an efficient and accurate approximation of the minimal Geršgorin set are presented.</p> / <p>Постоје бројни начини за локализацију карактеристичних корена. Један од најчувенијих резултата је да се спектар дате матрице АCn,n налази у скупу који представља унију кругова са центрима у дијагоналним елементима матрице и полупречницима који су једнаки суми модула вандијагоналних елемената одговарајуће врсте у матрици. Овај резултат (Гершгоринова теорема, 1931.), сматра се једним од најзначајнијих и најелегантнијих начина за локализацију карактеристичних корена ([61]). Међу свим локализацијама Гершгориновог типа, минимални Гершгоринов скуп даје најпрецизнију локализацију спектра ([39]). У овој дисертацији, приказани су нови алгоритми за одређивање тачне и поуздане апроксимације минималног Гершгориновог скупа.</p> / <p>Postoje brojni načini za lokalizaciju karakterističnih korena. Jedan od najčuvenijih rezultata je da se spektar date matrice ACn,n nalazi u skupu koji predstavlja uniju krugova sa centrima u dijagonalnim elementima matrice i poluprečnicima koji su jednaki sumi modula vandijagonalnih elemenata odgovarajuće vrste u matrici. Ovaj rezultat (Geršgorinova teorema, 1931.), smatra se jednim od najznačajnijih i najelegantnijih načina za lokalizaciju karakterističnih korena ([61]). Među svim lokalizacijama Geršgorinovog tipa, minimalni Geršgorinov skup daje najprecizniju lokalizaciju spektra ([39]). U ovoj disertaciji, prikazani su novi algoritmi za određivanje tačne i pouzdane aproksimacije minimalnog Geršgorinovog skupa.</p>
|
Page generated in 0.0425 seconds