Spelling suggestions: "subject:"apprentissage para l'exemple"" "subject:"pprentissage para l'exemple""
1 |
Développement d’une méthodologie robuste d’inversion dédiée au CND par courants de Foucault / Development of a robust inversion methodology in nondestructive eddy current testingAhmed, Shamim 05 March 2018 (has links)
Ce travail de thèse porte sur l'étude et le développement de stratégies innovantes pour la résolution, basée sur l'utilisation de la simulation et de la théorie de l'apprentissage statistique, de problèmes inverses dans le domaine contrôle non destructif (CND) par méthodes électromagnétiques. L’approche générale adoptée consiste à estimer un ensemble des paramètres inconnus, constituant un sous-ensemble des paramètres décrivant le scénario de contrôle étudié. Dans les cas de CND, les trois applications classiquement visées sont la détection, la localisation et la caractérisation de défauts localisés dans le matériau inspecté. Ce travail concerne d’une part la localisation et la caractérisation des fissures et d’autre part l'estimation de certains paramètres de sonde difficiles à maîtriser ou inconnus. Dans la littérature, de nombreuses méthodes permettant de remonter aux paramètres inconnus ont été étudiées. Les approches d'optimisation standard sont basées sur la minimisation d'une fonction de coût, décrivant l'écart entre les mesures et les données simulées avec un solveur numérique. Les algorithmes les plus répandus se fondent sur des approches itératives déterministes ou stochastiques. Cette thèse considère le problème de l'estimation de paramètres inconnus dans une perspective d'apprentissage statistique/automatique. L’approche supervisée adoptée est connue sous le nom de d’apprentissage par l'exemple (LBE en anglais). Elle se compose d’une première phase, dite hors ligne, pendant laquelle un « modèle inverse » est construit sur la base de la connaissance d’un ensemble de couples entrée/sortie connu, appelé ensemble d’entraînement. Une fois la phase d’apprentissage terminée et le modèle généré, le modèle est utilisé dans une phase dite en ligne pour prédire des sorties inconnues (les paramètres d'intérêt) en fonction de nouvelles entrées (signaux CND mesurés appartenant à un second ensemble dit de test) en temps quasi-réel. Lorsqu’on considère des situations pratiques d'inspection, en raison du grand nombre de variables impliquées, la création d'un modèle précis et robuste n’est pas une tâche triviale (problème connu comme la malédiction de la dimensionnalité). Grâce à une étude approfondie et systématique, l’approche développée dans cette thèse a conduit à la mise en place de différentes solutions capables d’atteindre une bonne précision dans l’estimation des paramètres inversés tout en conservant de très bonnes performances en temps de calcul. Le schéma LBE proposé dans cette thèse a été testé avec succès sur un ensemble des cas réels, en utilisant à la fois des données synthétiques bruitées et des mesures expérimentales. / The research activity of the PhD thesis focuses on the study and development of innovative strategies for the solution of inverse problems arising in the field of Non-Destructive Testing and Evaluation (NDT-NDE), based on the use of statistical learning theory. Generally speaking, the objective of the optimization stage is the retrieval of the unknown parameters within the studied electromagnetic scenario. In the case of NDT-NDE, the optimization problem, in terms of parameters to estimate, is divided into three stages, namely detection, localization and characterization. This work mainly addresses localization and characterization of crack(s) and/or estimation of probe(s) parameters. Unknown parameters, constituting a subset of the parameters set describing the electromagnetic scenario, are robustly estimated using several approaches. Standard optimization approaches are based on the minimization, by means of iterative approaches like stochastic and/or deterministic algorithms, of a cost function describing the discrepancy between measurements and prediction. This thesis considers the estimation problem in a machine learning perspective, adopting well known Learning-By-Example (LBE) paradigm. In a so-called offline phase, a surrogate inverse model is first fitted on a set of known input/output couples, generated through numerical simulations. Then, in a so-called online phase, the model predicts unknown outputs (the parameters of interest) based on new inputs (measured NDT signals) in quasi-real time. When considering practical inspection situations, due to the large number of variables involved (known as curse of dimensionality), obtaining an accurate and robust model is not a trivial task. This thesis carries out a deep and systematic study of different strategies and solutions to achieve simultaneously good accuracy and computational time efficiency in the parameters estimation. Moreover, a particular emphasis is put on the different approaches adopted for mitigating the curse of dimensionality issue. The proposed LBE schema has been tested with success on a wide set of practical problems, using both synthetic noisy data and experimental measurements.
|
2 |
Pattern-based refactoring in model-driven engineeringMokaddem, Chihab eddine Mohamed Omar 05 1900 (has links)
L’ingénierie dirigée par les modèles (IDM) est un paradigme du génie logiciel qui utilise les
modèles comme concepts de premier ordre à partir desquels la validation, le code, les tests
et la documentation sont dérivés. Ce paradigme met en jeu divers artefacts tels que les
modèles, les méta-modèles ou les programmes de transformation des modèles. Dans un
contexte industriel, ces artefacts sont de plus en plus complexes. En particulier, leur
maintenance demande beaucoup de temps et de ressources. Afin de réduire la complexité
des artefacts et le coût de leur maintenance, de nombreux chercheurs se sont intéressés au
refactoring de ces artefacts pour améliorer leur qualité.
Dans cette thèse, nous proposons d’étudier le refactoring dans l’IDM dans sa
globalité, par son application à ces différents artefacts. Dans un premier temps, nous
utilisons des patrons de conception spécifiques, comme une connaissance a priori, appliqués
aux transformations de modèles comme un véhicule pour le refactoring. Nous procédons
d’abord par une phase de détection des patrons de conception avec différentes formes et
différents niveaux de complétude. Les occurrences détectées forment ainsi des opportunités
de refactoring qui seront exploitées pour aboutir à des formes plus souhaitables et/ou plus
complètes de ces patrons de conceptions.
Dans le cas d’absence de connaissance a priori, comme les patrons de conception,
nous proposons une approche basée sur la programmation génétique, pour apprendre des
règles de transformations, capables de détecter des opportunités de refactoring et de les
corriger. Comme alternative à la connaissance disponible a priori, l’approche utilise des
exemples de paires d’artefacts d’avant et d’après le refactoring, pour ainsi apprendre les
règles de refactoring. Nous illustrons cette approche sur le refactoring de modèles. / Model-Driven Engineering (MDE) is a software engineering paradigm that uses models as
first-class concepts from which validation, code, testing, and documentation are derived.
This paradigm involves various artifacts such as models, meta-models, or model
transformation programs. In an industrial context, these artifacts are increasingly complex.
In particular, their maintenance is time and resources consuming. In order to reduce the
complexity of artifacts and the cost of their maintenance, many researchers have been
interested in refactoring these artifacts to improve their quality.
In this thesis, we propose to study refactoring in MDE holistically, by its application
to these different artifacts. First, we use specific design patterns, as an example of prior
knowledge, applied to model transformations to enable refactoring. We first proceed with a
detecting phase of design patterns, with different forms and levels of completeness. The
detected occurrences thus form refactoring opportunities that will be exploited to implement
more desirable and/or more complete forms of these design patterns.
In the absence of prior knowledge, such as design patterns, we propose an approach
based on genetic programming, to learn transformation rules, capable of detecting
refactoring opportunities and correcting them. As an alternative to prior knowledge, our
approach uses examples of pairs of artifacts before and after refactoring, in order to learn
refactoring rules. We illustrate this approach on model refactoring.
|
Page generated in 0.1213 seconds