Spelling suggestions: "subject:"aapproche variationnelle"" "subject:"aapproche variationnelles""
1 |
Modélisation à plusieurs échelles d'un milieu continu hétérogène aléatoire / Stochastic modeling of random heterogeneous materialsTran, Vinh Phuc 05 October 2016 (has links)
Lorsque les longueurs caractéristiques sont bien séparées, la théorie de l'homogénéisation propose un cadre théorique rigoureux pour les matériaux hétérogènes. Dans ce contexte, les propriétés macroscopiques peuvent être calculées à partir de la résolution d’un problème auxiliaire formulé sur un volume élémentaire représentatif (avec des conditions limites adéquates). Dans le présent travail, nous nous intéressons à l’homogénéisation de matériaux hétérogènes décrits à l’échelle la plus fine par deux modèles différents (tous deux dépendant d’une longueur caractéristique spécifique) alors que le milieu homogène équivalent se comporte, dans les deux cas, comme un milieu de Cauchy classique.Dans la première partie, une microstructure aléatoire de type Cauchy est considérée. La résolution numérique du problème auxiliaire, réalisée sur plusieurs réalisations, implique un coût de calcul important lorsque les longueurs caractéristiques des constituants ne sont pas bien séparées et/ou lorsque le contraste mécanique est élevé. Pour surmonter ces limitations, nous basons notre étude sur une description mésoscopique du matériau combinée à la théorie de l'information. Dans cette mésostructure, obtenue par filtrage, les détails les plus fins sont lissés.Dans la seconde partie, nous nous intéressons aux matériaux à gradient dans lesquels il existe au moins une longueur interne, qui induit des effets de taille à l’échelle macroscopique. La microstructure aléatoire est décrite par un modèle à gradient de contrainte récemment proposé. Malgré leur similarité conceptuelle, nous montrerons que le modèle de stress-gradient et strain-gradient définissent deux classes de matériaux distinctes. Nous proposons ensuite des approches simples (méthodes de champs moyens) pour mieux comprendre les hypothèses de modélisation. Les résultats semi-analytiques obtenus nous permettent d’explorer l'influence des paramètres du modèle sur les propriétés macroscopiques et constituent la première étape vers la simulation en champs complets / If the length-scales are well separated, homogenization theory can provide a robust theoretical framework for heterogeneous materials. In this context, the macroscopic properties can be retrieved from the solution to an auxiliary problem, formulated over the representative volume element (with appropriate boundary conditions). In the present work, we focus on the homogenization of heterogeneous materials which are described at the finest scale by two different materials models (both depending on a specific characteristic length) while the homogeneous medium behaves as a classical Cauchy medium in both cases.In the first part, the random microstructure of a Cauchy medium is considered. Solving the auxiliary problem on multiple realizations can be very costly due to constitutive phases exhibiting not well-separated characteristic length scales and/or high mechanical contrasts. In order to circumvent these limitations, our study is based on a mesoscopic description of the material, combined with information theory. In the mesostructure, defined by a filtering framework, the fine-scale features are smoothed out.The second part is dedicated to gradient materials which induce microscopic size-effect due to the existence of microscopic material internal length(s). The random microstructure is described by a newly introduced stress-gradient model. Despite being conceptually similar, we show that the stress-gradient and strain-gradient models define two different classes of materials. Next, simple approaches such as mean-field homogenization techniques are proposed to better understand the assumptions underlying the stress-gradient model. The obtained semi-analytical results allow us to explore the influence on the homogenized properties of the model parameters and constitute a first step toward full-field simulations
|
Page generated in 0.1187 seconds