Spelling suggestions: "subject:"aprendizado dde máquina semfim"" "subject:"aprendizado dde máquina enfim""
1 |
Aplicando princípios de aprendizado de máquina na construção de um biocurador automático para o Gene Ontology (GO)Amaral, Laurence Rodrigues do 08 October 2013 (has links)
Made available in DSpace on 2016-06-02T19:03:58Z (GMT). No. of bitstreams: 1
6030.pdf: 2345815 bytes, checksum: 385c6d8c1bda1d4afe540c01668338fa (MD5)
Previous issue date: 2013-10-08 / Nowadays, the amount of biological data available by universities, hospitals and research centers has increased exponentially due the use of bioinformatics, with the development of methods and advanced computational tools, and high-throughput techniques. Due to this significant increase in the amount of available data, new strategies for capture, storage and analysis of data are necessary. In this scenario, a new research area is developing, called biocuration. The biocuration is becoming a fundamental part in the biological and biomedical research, and the main function is related with the structuration and organization of the biological information, making it readable and accessible to mens and computers. Seeking to support a fast and reliable understanding of new domains, different initiatives are being proposed, and the Gene Ontology (GO) is one of the main examples. The GO is one the main initiatives in bioinformatics, whose main goal is to standardize the representation of genes and their products, providing interconnections between species and databases. Thus, the main objective of this research is to propose a computational architecture that uses principles of never-ending learning to help biocurators in new GO classifications. Nowadays, this classification task is totally manual. The proposed architecture uses semi-supervised learning combining different classifiers used in the classification of new GO samples. In addition, this research also aims to build high-level knowledge in the form of simple IF-THEN rules and decision trees. The generated knowledge can be used by the GO biocurators in the search for important patterns present in the biological data, revealing concise and relevant information about the application domain. / Nos dias atuais, a quantidade de dados biológicos disponibilizados por universidades, hospitais e centros de pesquisa tem aumentado de forma exponencial, devido ao emprego da bio-informática, através do desenvolvimento de métodos e técnicas computacionais avançados, e de técnicas de high-throughput. Devido a esse significativo aumento na quantidade de dados disponibilizados, gerou-se a necessidade da criação de novas estratégias para captura, armazenamento e principalmente analise desses dados. Devido a esse cenário, um novo campo de trabalho e pesquisa vem surgindo, chamado biocuragem. A biocuragem está se tornando parte fundamental na pesquisa biomédica e biológica, e tem por principal função estruturar e organizar a informação biológica, tornando-a legível e acessível a homens e computadores. Buscando prover um rápido e confiável entendimento de novos domínios, diferentes iniciativas estão sendo propostas, tendo no Gene Ontology (GO) um dos seus principais exemplos. O GO se destaca mundialmente sendo uma das principais iniciativas em bioinformática, cuja principal meta e padronizar a representação dos genes e seus produtos, provendo interconexões entre espécies e bancos de dados. Dessa forma, objetiva-se com essa pesquisa propor uma arquitetura computacional que utiliza princípios de aprendizado de maquina sem-fim para auxiliar biocuradores do GO na tarefa de classificação de novos termos, tarefa essa, totalmente manual. A arquitetura proposta utiliza aprendizado semi-supervisionado combinando diferentes classificadores na rotulação de novas instâncias do GO. Além disso, essa pesquisa também tem por objetivo a construção de conhecimento de alto-nível na forma de simples regras SE-ENTÃO e árvores de decisão. Esse conhecimento gerado pode ser utilizado pelos biocuradores do GO na busca por padrões importantes presentes nos dados biológicos, revelando informações concisas e relevantes sobre o domínio da aplicação.
|
2 |
Aprendizado sem-fim de paráfrasesPolastri, Paulo César 04 March 2016 (has links)
Submitted by Luciana Sebin (lusebin@ufscar.br) on 2016-10-05T18:38:23Z
No. of bitstreams: 1
DissPCP.pdf: 1921482 bytes, checksum: 5298cc1a066e0cfe217b2b9c61076e65 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-14T14:13:08Z (GMT) No. of bitstreams: 1
DissPCP.pdf: 1921482 bytes, checksum: 5298cc1a066e0cfe217b2b9c61076e65 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-14T14:13:18Z (GMT) No. of bitstreams: 1
DissPCP.pdf: 1921482 bytes, checksum: 5298cc1a066e0cfe217b2b9c61076e65 (MD5) / Made available in DSpace on 2016-10-14T14:13:28Z (GMT). No. of bitstreams: 1
DissPCP.pdf: 1921482 bytes, checksum: 5298cc1a066e0cfe217b2b9c61076e65 (MD5)
Previous issue date: 2016-03-04 / Não recebi financiamento / Use different words to express/convey the same message is a necessity in any natural language and, as such, should be investigated in research in Natural Language Processing (NLP). When it is just a simple word, we say that the interchangeable words are synonyms; while the term paraphrase is used to express a more general idea and that also may involve more than one word. For example, the sentences "the light is red" and "the light is closed" are examples of paraphrases as "sign" and "traffic light" represent synonymous in this context. Proper treatment of paraphrasing is important in several NLP applications, such as Machine Translation, which paraphrases can be used to increase the coverage of Statistical Machine Translation systems; on Multidocument Summarization, where paraphrases identification allows the recognition of repeated information; and Natural Language Generation, where the generation of paraphrases allows creating more varied and fluent texts. The project described in this document is intended to verify that is possible to learn, in an incremental and automatic way, paraphrases in words level from a bilingual parallel corpus, using Never-Ending Machine Learning (NEML) strategy and the Internet as a source of knowledge. The NEML is a machine learning strategy, based on how humans learn: what is learned previously can be used to learn new information and perhaps more complex in the future. Thus, the NEML has been applied together with the strategy for paraphrases extraction proposed by Bannard and Callison-Burch (2005) where, from bilingual parallel corpus, paraphrases are extracted using a pivot language. In this context, it was developed NEPaL (Never-Ending Paraphrase Learner) AMSF system responsible for: (1) extract the internet texts, (2) align the text using a pivot language, (3) rank the candidates according to a classification model and (4) use the knowledge to produce a new classifier model and therefore gain more knowledge restarting the never-ending learning cycle. / Usar palavras diferentes para expressar/transmitir a mesma mensagem é uma necessidade em qualquer língua natural e, como tal, deve ser investigada nas pesquisas em Processamento de Língua Natural (PLN). Quando se trata apenas de uma palavra simples, dizemos que as palavras intercambiáveis são sinônimos; enquanto o termo paráfrase é utilizado para expressar uma ideia mais geral e que pode envolver também mais de uma palavra. Por exemplo, as sentenças “o sinal está vermelho” e “o semáforo está fechado” são exemplo de paráfrases enquanto “sinal” e “semáforo” representam sinônimos, nesse contexto. O tratamento adequado de paráfrases é importante em diversas aplicações de PLN, como na Tradução Automática, onde paráfrases podem ser utilizadas para aumentar a cobertura de sistemas de Tradução Automática Estatística; na Sumarização Multidocumento, onde a identificação de paráfrases permite o reconhecimento de informações repetidas; e na Geração de Língua Natural, onde a geração de paráfrases permite criar textos mais variados e fluentes. O projeto descrito neste documento visa verificar se é possível aprender, de modo incremental e automático, paráfrases em nível de palavras a partir de corpus paralelo bilíngue, utilizando a estratégia de Aprendizado de Máquina Sem-fim (AMSF) e a Internet como fonte de conhecimento. O AMSF é uma estratégia de Aprendizado de Máquina, baseada na forma como os humanos aprendem: o que é aprendido previamente pode ser utilizado para aprender informações novas e talvez mais complexas, futuramente. Para tanto, o AMSF foi aplicado juntamente com a estratégia para a extração de paráfrases proposta por Bannard e Callison-Burch (2005) onde, a partir de corpus paralelo bilíngue, paráfrases são extraídas utilizando um idioma pivô. Nesse contexto, foi desenvolvido o NEPaL (Never-Ending Paraphrase Learner), sistema de AMSF responsável por: (1) extrair textos da internet, (2) alinhar os textos utilizando um idioma pivô, (3) classificar as candidatas de acordo com um modelo de classificação e (4) utilizar o conhecimento para produzir um novo modelo classificador e, consequentemente, adquirir mais conhecimento reiniciando o ciclo de aprendizado sem-fim.
|
Page generated in 0.1099 seconds