Spelling suggestions: "subject:"aprendizagem semissupervisionado"" "subject:"aprendizagem semisupervisionado""
1 |
Hyper-parameter optimization for manifold regularization learning = Otimização de hiperparâmetros para aprendizado do computador por regularização em variedades / Otimização de hiperparâmetros para aprendizado do computador por regularização em variedadesBecker, Cassiano Otávio, 1977- 08 December 2013 (has links)
Orientador: Paulo Augusto Valente Ferreira / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-23T18:31:10Z (GMT). No. of bitstreams: 1
Becker_CassianoOtavio_M.pdf: 861514 bytes, checksum: 07ea364d206309cbabdf79f51037f481 (MD5)
Previous issue date: 2013 / Resumo: Esta dissertação investiga o problema de otimização de hiperparâmetros para modelos de aprendizado do computador baseados em regularização. Uma revisão destes algoritmos é apresentada, abordando diferentes funções de perda e tarefas de aprendizado, incluindo Máquinas de Vetores de Suporte, Mínimos Quadrados Regularizados e sua extensão para modelos de aprendizado semi-supervisionado, mais especificamente, Regularização em Variedades. Uma abordagem baseada em otimização por gradiente é proposta, através da utilização de um método eficiente de cálculo da função de validação por exclusão unitária. Com o intuito de avaliar os métodos propostos em termos de qualidade de generalização dos modelos gerados, uma aplicação deste método a diferentes conjuntos de dados e exemplos numéricos é apresentada / Abstract: This dissertation investigates the problem of hyper-parameter optimization for regularization based learning models. A review of different learning algorithms is provided in terms of different losses and learning tasks, including Support Vector Machines, Regularized Least Squares and their extension to semi-supervised learning models, more specifically, Manifold Regularization. A gradient based optimization approach is proposed, using an efficient calculation of the Leave-one-out Cross Validation procedure. Datasets and numerical examples are provided in order to evaluate the methods proposed in terms of their generalization capability of the generated models / Mestrado / Automação / Mestre em Engenharia Elétrica
|
Page generated in 0.1063 seconds