• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Redox control of the transcriptional response to oxidative stress by Arabidopsis redox-sensitive basic leucine zipper protein 68

Li, Yimin 21 June 2016 (has links)
Cellular redox states mediate various physiological and developmental processes. Mechanisms involved in sensing cellular redox state and linking it to an appropriate physiological response remains poorly understood in plants. Arabidopsis bZIP68 was previously found to undergo reversible oxidation in its Cys320 in cells under oxidative stress. In this study, it was found that bZIP68 was localized in the nucleus in Arabidopsis seedlings under normal conditions. Upon treatment of oxidative stress, bZIP68 underwent nucleocytoplasmic shuttling and accumulated in the cytoplasm. This stress-dependent nucleocytoplasmic shuttling depends on the redox-sensitive Cys320 and its nuclear export signal. bZIP68 suppresses expression of stress response genes under normal conditions and its loss-of-function mutation of bZIP68 leads to elevated expression of genes involved in oxidative stress defense including genes encoding for antioxidant proteins and for enzymes involved in biosynthesis of small molecule antioxidants. The bzip68 mutant also showed enhanced responses to stress treatment such as the oxidative stress and cold stress. Our study suggests that bZIP68 directly or indirectly senses perturbation of cellular redox states and links the redox change to activation of oxidative stress defense genes through redox regulation of transcription.
2

Rapid Metabolic Response of Plants Exposed to Light Stress

Choudhury, Feroza Kaneez 05 1900 (has links)
Environmental stress conditions can drastically affect plant growth and productivity. In contrast to soil moisture or salinity that can gradually change over a period of days or weeks, changes in light intensity or temperature can occur very rapidly, sometimes over the course of minutes or seconds. So, in our study we have taken an metabolomics approach to identify the rapid response of plants to light stress. In the first part we have focused on the ultrafast (0-90 sec) metabolic response of local tissues to light stress and in the second part we analyzed the metabolic response associated with rapid systemic signaling (0-12 min). Analysis of the rapid response of Arabidopsis to light stress has revealed 111 metabolites that significantly alter in their level during the first 90 sec of light stress exposure. We further show that the levels of free and total glutathione accumulate rapidly during light stress in Arabidopsis and that the accumulation of total glutathione during light stress is dependent on an increase in nitric oxide (NO) levels. We further suggest that the increase in precursors for glutathione biosynthesis could be linked to alterations in photorespiration, and that phosphoenolpyruvate could represent a major energy and carbon source for rapid metabolic responses. Taken together, our analysis could be used as an initial road map for the identification of different pathways that could be used to augment the rapid response of plants to abiotic stress. In addition, it highlights the important role of glutathione in initial stage of light stress response. Light-induced rapid systemic signaling and systemic acquired acclimation (SAA) are thought to play an important role in the response of plants to different abiotic stresses. Although molecular and metabolic responses to light stress have been extensively studied in local leaves, and to a lesser degree in systemic leaves, very little is known about the metabolic responses that occur in the different tissues that connect the local to the systemic leaves. These could be important in defining the specificity of the systemic response as well as in supporting the propagation of different systemic signals, such as the reactive oxygen species (ROS) wave. Here we report that local application of light stress to one rosette leaf resulted in a metabolic response that encompassed local, systemic and transport tissues (tissues that connect the local and systemic tissues), demonstrating a high degree of physical and metabolic continuity between different tissues throughout the plant. We further show that the response of many of the systemically altered metabolites could be associated with the function of the ROS wave, and that the level of eight different metabolites is altered in a similar way in all tissues tested (local, systemic, and transport tissues). These compounds could define a core metabolic signature for light stress that propagates from the local to the systemic leaves. Taken together, our findings suggest that metabolic changes occurring in cells that connect the local and systemic tissues could play an important role in mediating rapid systemic signaling and systemic acquired acclimation to light stress.
3

The alternative oxidase gene family in arabidopsis : insights from a transcriptomic study

Clifton, Rachel January 2006 (has links)
[Truncated abstract] Mitochondria play an essential role in diverse metabolic pathways in plants. Their primary roles are the oxidation of organic acids via the tricarboxylic acid cycle and the synthesis of ATP coupled to the transfer of electrons from reduced NAD+ to oxygen via the electron transport chain. Plant mitochondria also contain nonphosphorylating bypasses of the respiratory chain, catalysed by the alternative oxidase (AOX), type II NAD(P)H dehydrogenases (NDHs) and uncoupling proteins (UCPs). Each of these components bypasses energy conservation by either circumventing the formation or utilization of the electrochemical proton gradient, and each is encoded by a small gene family in Arabidopsis. It is proposed that the alterative pathways are likely to be involved in balancing cellular redox and energy status and in minimizing the production of ROS generated by over-reduction of basal respiratory chain components. Furthermore the alternative respiratory pathways are thought to play a role in plant responses to stress. In this study a transcriptomic approach was taken to investigate the role of the alternative respiratory pathways in Arabidopsis, with a focus on elucidating the role and regulation of the AOX gene family. Analysis of the expression of the five AOX genes in Arabidopsis over development and in a range of tissues revealed a unique spatiotemporal expression pattern for each gene. Expression profiling using quantitative RT-PCR, MPSS and microarrays detected an abundance of the AOX1a transcript throughout the plant and over development. The expression patterns of other AOX genes provide insight into their putative roles, AOX1b was expressed predominantly in the flower, AOX1d was particularly abundant in senescing leaves and AOX2 expression was only observed in the seed.

Page generated in 0.1166 seconds