• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interactions of N-Acylethanolamine Metabolism and Abscisic Acid Signaling in Arabidopsis Thaliana Seedlings

Cotter, Matthew Q. 08 1900 (has links)
N-Acylethanolamines (NAEs) are endogenous plant lipids hydrolyzed by fatty acid amide hydrolase (FAAH). When wildtype Arabidopsis thaliana seeds were germinated and grown in exogenous NAE 12:0 (35 µM and above), growth was severely reduced in a concentration dependent manner. Wildtype A. thaliana seeds sown on exogenous abscisic acid (ABA) exhibited similar growth reduction to that seen with NAE treatment. AtFAAH knockouts grew and developed similarly to WT, but AtFAAH overexpressor lines show markedly enhanced sensitivity to ABA. When low levels of NAE and ABA, which have very little effect on growth alone, were combined, there was a dramatic reduction in seedling growth in all three genotypes, indicating a synergistic interaction between ABA and NAE. Notably, this synergistic arrest of seedling growth was partially reversed in the ABA insensitive (abi) mutant abi3-1, indicating that a functional ABA signaling pathway is required for the full synergistic effect. This synergistic growth arrest results in an increased accumulation of NAEs, but no concomitant increase in ABA levels. The combined NAE and ABA treatment induced a dose-dependent increase in ABI3 transcript levels, which was inversely related to growth. The ABA responsive genes AtHVA22B and RD29B also had increased expression in both NAE and ABA treatment. The abi3-1 mutant showed no expression of ABI3 and AtHVA22B, but RD29B expression remained similar to wildtype seedlings, suggesting an alternate mechanism for NAE and ABA interaction. Taken together, these data suggest that NAE metabolism acts through ABI3-dependent and independent pathways in the negative regulation of seedling development.
2

Metabolism and Action of Polyunsaturated N-acylethanolamines in Arabidopsis thaliana Seedlings

Keereetaweep, Jantana 08 1900 (has links)
The lipoxygenase (LOX) pathway plays an important role in the oxidative metabolism of polyunsaturated N-acylethanolamines (PU-NAEs). The LOX pathway functions in conjugation with hydrolysis by fatty acid amide hydrolase (FAAH) and to produce oxidized NAEs during seed germination and early seedling development. When Arabidopsis seedlings were grown in low micromolar concentrations of lauroylethanolamide (NAE 12:0), growth retardation and elevated endogenous PU-NAE levels were observed due to the competitive inhibition of LOX by NAE 12:0. The elevated levels of endogenous PU-NAEs were more pronounced in genotypes with reduced NAE hydrolase capacity (faah knockouts), and less evident with overexpression of FAAH. Alterations in PU-NAE metabolism were studied in seedlings of various lox and FAAH mutants. The partitioning of PU-NAEs into oxylipin metabolites was exaggerated in the presence of exogenous linolenoylethanolamide (NAE18:3) and resulted in bleaching of cotyledons. The bleaching phenotype was restricted to a narrow developmental window (3-to-5 days after sowing), and was attributed to a reversible disruption of thylakoid membranes in chloroplasts. Biochemical and genetic evidence suggested that 9-hydro(pero)xy and 13-hydro(pero)xy octadecatrienoylethanolamides (9- and 13-NAE-H(P)OT), but not their corresponding hydro(pero)xy free fatty acids, induced cotyledon bleaching. The LOX-mediated metabolites of NAE18:3 shared some overlapping effects on seedling development with those of linoleoylethanolamide (NAE18:2) such as a reduction in seedling root growth. On the other hand, NAE18:3 oxylipin metabolites also exhibited distinct effects during seedling development such as the inhibition of photomorphogenesis. Biochemical and genetic evidence indicated that a LOX-mediated metabolite of NAE18:2, 9-hydro(pero)xy octadecadienoylethanolamide (9-NAE-H(P)OD), acted as a potent negative regulator of seedling root development, and this depended on an intact abscisic acid (ABA) signaling pathway. Synergistic inhibition of root elongation between 9-NAE-H(P)OD and ABA was restricted to a narrow developmental window (3-to-5 d after sowing) of seedling development. Genetic evidence with Arabidopsis mutants in ABA synthesis (aba1, aba2), perception (pyr1, pyl2, pyl4, pyl5, pyl8) and transcriptional regulation (abi3-1) suggested that negative regulation of growth by 9-NAE-H(P)OD likely was mediated through an increase in ABA synthesis, and this was confirmed biochemically. Induction of a secondary dormancy program in Arabidopsis seedlings by environmental stresses also requires an intact ABA signaling cascade, and our study has shown that this regulatory seedling program is dependent, in large part, on NAE oxylipin formation. Together, results presented here indicated that LOX-mediated metabolites of NAE18:3 and NAE18:2 in Arabidopsis represent a newly-discovered group of bioactive metabolites, and their accumulation during the embryo-to-seedling transition of plant development may act to synchronize seedling establishment with environmental cues.
3

N-Acylethanolamine (NAE) Profiles Change During Arabidopsis Thaliana Seed Germination and Seedling Growth

Wiant, William C. 08 1900 (has links)
An understanding of the potential roles as lipid mediators of a family of bioactive metabolites called N-acylethanolamines (NAEs) depends on their accurate identification and quantification. The levels of 18C unsaturated NAEs (e.g. NAE18:2, NAE 18:3, etc.) in wild-type seeds (about 2000 ng/g fw) generally decreased by about 80% during germination and post-germinative growth. In addition, results suggest NAE-degradative fatty acid amide hydrolase (FAAH) expression does not play a major role in normal NAE metabolism as previously thought. Seedlings germinated and grown in the presence of abscisic acid (ABA), an endogenous plant hormone, exhibited growth arrest and secondary dormancy, similar to the treatment of seedlings with exogenous N­lauroylethanolamine (NAE12:0). ABA-mediated growth arrest was associated with higher levels of unsaturated NAEs. Overall, these results are consistent with the concept that NAE metabolism is activated during seed germination and suggest that the reduction in unsaturated NAE levels is under strict temporal control and may be a requirement for normal seed germination and post-germinative growth.
4

A regulatory role for N-acylethanolamine metabolism in Arabidopsis thaliana seeds and seedlings.

Teaster, Neal D. 05 1900 (has links)
N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. Because NAE levels in seeds decline during imbibition similar to ABA, a physiological role was predicted for these metabolites in Arabidopsis thaliana seed germination and seedling development. There is also a corresponding increase of AtFAAH (fatty acid amide hydrolase), transcript levels and activity, which metabolizes NAE to ethanolamine and free fatty acids. Based on whole genome microarray studies it was determined that a number of up-regulated genes that were responsive to NAE were also ABA responsive. NAE induced gene expression in these ABA responsive genes without elevating endogenous levels of ABA. It was also determined that many of these NAE/ABA responsive genes were associated with an ABA induced secondary growth arrest, including ABI3. ABI3 is a transcription factor that regulates the transition from embryo to seedling growth, the analysis of transcript levels in NAE treated seedlings revealed a dose dependent, inverse relationship between ABI3 transcript levels and growth, high ABI3 transcript levels were associated with growth inhibition. Similar to ABA, NAE negatively regulated seedling growth within a narrow window of early seedling establishment. When seedlings are exposed to NAE or ABA within the window of sensitivity, the induction of genes normally associated with the ungerminated desiccation tolerant state resumed. The NAE tolerant FAAH overexpressor and the NAE sensitive FAAH knockout both had a NAE/ABA sensitive window similar to the wild type A. thaliana. The abi3-1 ABA insensitive mutant does not undergo growth arrest upon exposure to ABA, but NAE did induce growth arrest when treated within the sensitivity window. This evidence showed that although NAE functions within an ABA dependent pathway, it also functions in an ABA independent signaling pathway. The FAAH overexpressor is tolerant to NAE through its ability to quickly metabolize NAE from the growth media, yet it is hypersensitive to ABA. The FAAH overexpressor also displayed hypersensitivity to GA, which improved its delayed germination in non-stratified seed, while the FAAH knock out showed GA insensitivity. Overall, these results showed that NAE functions as a negative regulator of germinating seed and seedling growth in ABA dependent and independent signaling pathways, and that altered NAE metabolism may interfere with ABA/GA perception in germinating seed.

Page generated in 0.128 seconds