• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uncovering the mechanisms of trans-arachidonic acids : function and implications for cerebral ischemia and beyond

Kooli, Amna. January 2008 (has links)
Cerebral ischemia is the principal cause of morbidity and mortality worldwide. In addition to neuronal loss associated with hypoxic-ischemic damage, cerebral ischemia is characterized by a neuromicrovascular injury. Nitrative stress and lipid peroxidation increase in hypoxic-ischemic damages and play an essential role in neuromicrovascular injury leading to cerebral ischemia. We hypothesized that newly described lipid peroxidation products, termed trans-arachidonic acids (TAA), could be implicated in the pathogenesis of hypoxia-ischemia by affecting the cerebral vasomotricity and microvascular integrity. / The effects of TAA on neuromicrovascular tone were tested ex vivo by monitoring the changes in vascular diameter of rat cerebral pial microvessels. Four isomers of TAA, namely 5 E-AA, 8E-AA, IIE-AA and 14 E-AA induced an endothelium-dependent vasorelaxation. Possible mechanisms involved in TAA-induced vasorelaxation were thoroughly investigated. Collectively, data enclosed revealed that TAA induce cerebral vasorelaxation through the interactive activation of BKCa channels with heme oxygenase-2. This interaction leads to generation of carbon monoxide which in turn activates soluble guanylate cyclase and triggers vasorelaxation. / Chronic effects of TAA on microvascular integrity were examined by generating a unilateral hypoxic-ischemic (HI) model of cerebral ischemia on newborn rat pups. Our HI model showed microvascular degeneration as early as 24h post-HI, preceded by an increase in cerebral TAA levels. HI-induced microvascular lesions were dependent on nitric oxide synthase activation and ensued TAA formation. Although the molecular mechanisms leading to TAA-induced microvascular degeneration were, in part uncovered for the retina, the primary site of action of TAA remains unknown. We demonstrated that TAA binds and activates GPR40 receptor, a newly described free fatty acid receptor. Importantly, GPR40 receptor knock-out prevents TAA-induced reduction in cerebral microvascular density and limits HI-induced brain infarct.
2

Uncovering the mechanisms of trans-arachidonic acids : function and implications for cerebral ischemia and beyond

Kooli, Amna. January 2008 (has links)
No description available.

Page generated in 0.0607 seconds