Spelling suggestions: "subject:"aransas yay"" "subject:"aransas aay""
1 |
Freshwater contributions and nitrogen sources in a South Texas estuarine ecosystem : a time-integrated story from stable isotope ratios in the eastern oyster (Crassostrea virginica)Bishop, Karen Anne 30 July 2012 (has links)
Changes in freshwater inputs due to water diversions and increased urbanization may alter the function and properties of estuarine ecosystems in South Texas. Freshwater and nitrogen inputs from the Mission and Aransas rivers to the federally designated Mission-Aransas National Estuarine Research Reserve (Mission-Aransas NERR) have received considerable attention in the past few years. However, freshwater inputs from two rivers (the San Antonio and Guadalupe rivers) that combine and drain into a neighboring bay (San Antonio Bay) may also provide a substantial nitrogen source to Aransas Bay, which is within the boundaries of the Mission-Aransas NERR. In order to study the influence of the San Antonio and Guadalupe rivers, an oyster species, Crassostrea virginica, was chosen to provide time-integrated information about freshwater contribution as a nitrogen source within the bays. Chapter One addresses variations in isotope values ([delta]¹⁵N and [delta]¹³C) in oyster adductor muscle tissue from 2009-2011 along a sampling transect from the head of San Antonio Bay through Aransas Bay. Stable carbon isotope values increased linearly from approximately -25 % to -17 %, while stable nitrogen isotope values decreased from approximately +16 % to +10 % along this transect. The patterns in stable carbon and nitrogen isotope values are consistent with substantial mixing of river-supplied water and nitrogen from San Antonio Bay into Aransas Bay. Variations in nitrogen isotopic signature between periods of sustained drought and flood conditions were relatively small, suggesting that riverine nitrogen contributions were similar regardless of the amount of freshwater inflow observed during the time frame of this study. Chapter Two addresses the isotopic equilibration time for adult oyster adductor muscle tissue using a year-long transplant experiment (November 2010-November 2011). Full representation of ambient water isotopic composition in oyster adductor muscle tissues was determined to occur roughly a year after transplant. Oyster adductor muscle could therefore be useful for long-term monitoring of nitrogen contribution from freshwater sources, and would be valuable to include in concert with water sampling and analysis of other tissues that have shorter integration rates for a comprehensive view of an estuarine system. / text
|
2 |
Activity and kinetics of microbial extracellular enzymes in organic-poor sands of a south Texas estuarySouza, Afonso Cesar Rezende de, 1968- 22 March 2011 (has links)
The respective kinetics of bacterial leucine aminopeptidase and [beta]-glucosidase activities were investigated to improve understanding of factors controlling activity and hydrolytic capacity in estuarine organic-poor sands. Depth distributions of enzyme activity and bulk organic matter content were determined in sediments of Aransas Bay and Copano Bay Texas, to investigate enzyme dynamics as related to the geochemical properties of the sediment. Vertical profiles of activity in sediment showed that the enzymes were more active at the surface and that the potential hydrolysis rate of leucine aminopeptidase was higher than that of [beta]-glucosidase. Vertical patterns of enzyme activity correlated (weakly) with variations in sediment organic matter (TOC, TN, and carbohydrates) content. Enrichments of sediment samples with monomeric organic compounds and inorganic nutrients did not affect leucine aminopeptidase and [beta]-glucosidase activities in short- and long-term incubations. Enzyme activity was independent of nutrient availability and suggested that microbial communities were not nutrient-limited. Time-course assays of bacterial hydrolysis of TOC, TN, and carbohydrates provided information about how substrate limitation may affect enzyme activity. Positive correlations between bulk TOC and TN content and enzyme activity indicated enzyme dependence on polymeric substrate content. Induction of enzyme activity after sediment enrichments with specific labile compounds confirmed the importance of available organic substrate to enzyme hydrolysis efficiency. A kinetic approach established the occurrence of enzyme inhibition and its effects on enzyme hydrolytic capacity. The addition of a specific-enzyme substrate to sediment samples modified enzyme parameters and indicated that a substrate-reversible type of inhibitor could reduce enzyme hydrolytic capacity. The addition of polyphenol, as a natural inhibitor of enzyme activity, to the sediment resulted in a concomitant reduction of leucine aminopeptidase activity and ammonium regeneration rate, and thus demonstrated a close coupling between enzyme activity and sediment ammonium regeneration. These research results demonstrate the dynamic nature of the hydrolytic enzymes, provide information about the mechanisms of induction and inhibition of activity, and demonstrate some implications of reducing the hydrolytic capacity to organic matter decomposition and nutrient regeneration rates. / text
|
Page generated in 0.0526 seconds