• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Smarta elnät med fokus på energilager; en lösning till hållbar tryckluftsförsörjning inom industrin : Simulering och optimering av energilager för utjämning av intermittenta energikällor / Smart Grids with a focus on Energy Storage; a Solution for Sustainable Compressed Air Supply within the Swedish Industry : Simulation and Optimization of Energy Storage to balance Intermittent Energy Sources

Nydahl, Helena, Marmolin, Annica January 2015 (has links)
Världens energibehov förväntas ökar samtidigt som miljökraven blir allt hårdare. För att komma till rätta med klimatförändringarna och utsläppen av växthusgaser måste användningen av fossila bränslen minska samtidigt som energieffektiviseringar och förnybara energikällor måste öka. En större andel intermittenta förnybara energikällor på elmarknaden medför utmaningar. Finns det inget elbehov då det exempelvis blåser eller när solen skiner går den producerade elen förlorad, detta leder till att produktion och konsumtion av elektricitet måste ske samtidigt. För att förnybar energi ska kunna expandera men också effektiviseras måste samhället utveckla smarta elnät. Det finns olika uppfattningar vad som krävs för att skapa smarta elnät men elektrisk energilagersystem återkommer ofta i litteraturen. Det finns forskare som anser att satsning på intermittenta förnybara energikällor inte är ett alternativ om inte energin går att lagra. Compressed air energy storage är ett energilager som använder komprimerad luft för att lagra energin tills det finns ett behov. Industrin i Sverige står för drygt en tredjedel av den totala energianvändningen. Över 90 % av tillverkningsindustrin använder tryckluft. Det finns stora och små förbrukare av tryckluft beroende på användningsområde.  I denna studie kommer en internationell nulägesbeskrivning ges i utvecklingen av smarta elnät med fokus på elektriska energilagersystem. Syftet är att studien ska vara ett diskussionsunderlag, en informationsbärare och idéskapare. Den internationella nulägesbeskrivningen baseras på studiebesök, litteratursammanställning samt intervjuer. Resultatet från den internationella nulägesbeskrivningen visar att intresset för elektriska energilagersystem ökar då det är en central del i utvecklingen av smarta elnät.  Mellan 2011-2013 ökade investeringarna i elektriska energilager med 521 %. En anledning till denna ökning är den internationella trenden med microgrids och mindre decentraliserade kraftverk. Med ökad efterfrågan på energilagringssystem kommer nya energilagringssystem skapas och befintliga system utvecklas. Syftet med studien är även att undersöka om energilager är en lösning till hållbar tryckluftsförsörjning inom industrin. Målet är att dimensionera ett luftningssystem bestående av vindkraftverk och energilager, med en viss volym och maxtryck, för en stor- och liten tryckluftsförbrukare. I studien kommer även kostnadsbesparingen för den stora förbrukaren optimeras genom arbitrage. Dimensioneringen görs utifrån simuleringar i Simulink och optimering görs i MATLAB. Dimensionerat luftningssystemet för den stora tryckluftsförbrukaren består av ett vindkraftverk, ett energilager på 200 m3 med maxtryck på 10 bar. Täckningsgraden, det vill säga andelen av luftbehovet som kan täckas med vindkraft tillsammans med ett energilager, är 26 % för det dimensionerade luftningssystemet. Resultatet ger då 48 % mindre energiförbrukning, cirka 1,2 miljoner kronor i kostnadsbesparing och en miljövinning motsvarande 532 ton CO2-ekvivalenter. Kostnadsbesparing, då el köps via arbitrage, för den stora förbrukaren optimeras till maximalt 1,2 miljoner kronor. Generatorn har då en verkningsgrad på 85 % och kompressorn 90 %. Dimensionerat luftningssystemet för den mindre tryckluftsförbrukaren består av en vindsnurra, ett energilager på 20 m3 med maxtryck på 30 bar. Täckningsgraden, det vill säga andelen av luftbehovet som kan täckas med vindsnurra tillsammans med ett energilager, är 61 % för det dimensionerade luftningssystemet. Resultatet ger då 93 % mindre energiförbrukning, cirka 26 tusen kronor i kostnadsbesparing och en miljövinningen motsvarande 10,7 ton CO2-ekvivalenter. Skillnaden mellan en vindsnurra och ett vindkraftverk är att vindsnurran inte producerar el utan använder rörelseenergin direkt. Ett system bestående av energilager som drivs av energi från vinden lämpar sig bättre för ett mindre tryckluftsbehov där det går att nå upp i högre täckningsgrad. Övergången till smarta elnät är nödvändigt för att tillgodose alla aspekter av hållbar utveckling. Det är ingen del av smarta elnät som är viktigare än någon annan. En hållbar tryckluftanvändning inom industrin är en del av smarta elnät och för att göra det möjligt har energilager en avgörande roll. Nulägesbeskrivningen visar att det i dagsläget finns ett ökat intresse för EES internationellt men att det inte finns ett EES som ensamt kommer lösa integrationen av förnybar energi. Tekniken för energilagring finns idag och växer imorgon. / The world’s energy demand is expected to increase and at the same time the environmental requirements are becoming stricter. To deal with the climate change and the greenhouse gas emissions, the use of fossil fuel need to decrease, while the energy efficiency and renewable energy production must increase. A greater share of intermittent renewable energy on the electricity market entails challenges. If there is no need for electricity when the wind is blowing or when the sun is shining the electricity is lost, this leads to production and consumption of electricity must occur simultaneously. To expand the renewable energy and make it more efficient, society must develop a smart grid. There are different opinions about what it takes to create smart grids, but electrical energy storage, EES, reappears frequently in the literature. There are even scientists who believe that investment in intermittent renewable energy sources is not an option unless energy can be stored. Compressed air energy storage is a technique that uses compressed air to store energy until there is a demand.   The Swedish industry accounts for over a third of total energy consumption in the country. Over 90 % of the all manufacturing industry uses compressed air. There are big and small users of compressed air depending on the industry.  In this study, an international status description is given in the development of smart grids with a focus on electrical energy storage systems. The aim of this study is to be an information carrier that creates discussion and new ideas. The international status description is based on field visits, literature surveys and interviews. The results from the international status description shows that interest in electric energy storage systems is increasing since it is a central part in the development of smart grids. Between 2011 and 2013 the investments increased in electrical energy storage with 521 %. One reason for this increase is the international trend of micro grids and small decentralized power plants. With the increased demand for energy storage, new energy storage systems are created and existing systems evolve. The purpose of the study is also to examine if energy storage is a solution for a sustainable supply of compressed air in the industry. The goal is to design a compressed air system consisting of wind turbines and energy storage with a certain volume and maximum pressure, for a large and a small compressed air consumer. The study will also determine the cost saving for the big users is an optimized through arbitrage. The design is based on simulations in Simulink and the optimization is done in MATLAB. The selected compressed air system for the large consumer is based on one wind turbine, energy storage of 200 m3 with a maximum pressure of 10 bar. The coverage ratio, i.e. the proportion of the air need that is covered by wind energy with energy storage, is 26 %. An investment in this system would give reduced energy consumption by 48 % leading to a cost reduction of about 1.2 million SEK and a reduced environmental impact equivalent to 532 tons of CO2-equivalents. The generator then has an efficiency of 85 %, and the compressor has 90 %. The selected compressed air system for the smaller consumer achieves a coverage rate of 61 % with the following dimensions; one windmill, energy storage of 20 m3 and maximum pressure of 30 bar. An investment in this system would give a reduced energy consumption by 93 %, leading to a cost reduction of about 26 000 SEK and a reduced environmental impact equivalent to 10.7 ton of CO2 equivalents. The difference between a windmill and a wind turbine is that the windmill does not produce electricity instead it uses kinetic energy directly. A system consisting of energy storage driven by energy from the wind is more suited for smaller air requirements where it is possible to achieve greater coverage. The transition to smart grids is necessary to be able to meet all aspects of sustainable development. There is no part of smart grids that is more important. Sustainable use of compressed air in industry is a part of smart grids and to make it possible energy storage is crucial. The international status description shows that there is a growing international interest in EES but there isn’t one EES alone that will solve the integration of renewable energy. The techniques for energy storage are existing today and are growing tomorrow.

Page generated in 0.0283 seconds