• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The synthesis of vinylphosphonate monomers

Evans, Marcus George Roy January 2000 (has links)
No description available.
2

Synthesis of Phosphonate Analogues of the Antibiotic Moenomycin A12

Abu Ajaj, Khalid 28 November 2004 (has links) (PDF)
SUMMARY The moenomycin-type compounds are known to inhibit selectively the enzyme penicillin binding protein 1b (PBP 1b) that catalyses the transglycosylation reaction in the biosynthesis of bacterial cell wall peptidoglycan. The moenomycins (see moenomycin A12) have been shown to interfere with this biosynthetic step interacting with the enzyme(s). The moenomycins do not induce resistance readily. A weak point in this respect may, however, be the phosphate bond to unit F. Its cleavage by a yet poorly characterized enzyme is the only enzymatic degradation reaction of the moenomycins that is known to-date. With this in mind we started a programme aimed at synthesizing trisaccharide analogues of moenomycin A12 in which the phosphate oxygen at C-1 of unit F is replaced by a CH2 group. It seemed important to retain all other functional groups in ring F as present in moenomycin since they are known to be of major importance as far as antibiotic activity is concerned. It appeared that the commercially available and cheap b-D-galactose-pentaacetate 30 would be an interesting starting material for this synthesis. In this work, the synthesis began with the introduction of the C-glycoside appendage at position 1 according to Giannis et al., thus forming the allyl C-galactopyranoside 34, a substance that represents the first C-glycosyl backbone for the synthesis of the glycosyl acceptors. The total synthesis of the glycosyl acceptors is shown in Scheme 6.1. We wanted to convert the C-allyl glycoside 34 into its propenyl analogue. Attempts to achieve this with singlet oxygen and palladium-mediated reaction proved fruitless. On the other hand, ene reaction of 34 with 4-phenyltriazolin-3,5-dione in CH2Cl2 provided 56 in 83 % yield. Ozonolysis of this alkene (-70 °C, MeOH-CH2Cl2) and subsequent quenching with dimethyl sulfide, followed by reduction of the crude aldehyde with sodium acetoxyborohydride (prepared from NaBH4 and AcOH in THF) furnished the primary alcohol 35 (85 %). This alcohol was converted into the mesylate 60 (60 %), and this in turn into the bromide 61 (80 %) by heating it at 80 °C with tetrabutylammonium bromide in toluene. The acetate groups were hydrolysed using Zemplén conditions to furnish 62 quantitatively. The primary hydroxyl group in 62 was protected as a tBuPh2Si ether 63 (85 %) on reaction with TBDPSCl in DMF at 0 °C, and as a tBuMe2Si ether 94 (87 %) on reaction with TBDMSCl in DMF at 0 °C in the presence of imidazole. PTScatalysed isopropylidenation of the 3,4-diols 63 and 94 with 2,2-dimethoxypropane in dry acetone gave the 3,4-O-acetonide derivatives 53 (88 %) and 95 (90 %), respectively. On the other hand, the glycosyl acceptor 53 was converted into the glycosyl acceptor 92. The free hydroxyl group in compound 53 was protected as an acetate group on reaction with acetic anhydride in pyridine in the presence of DMAP giving 89 (88 %). The silyl ether in 89 was cleaved with a molar solution of TBAF in THF affording compound 90 in 87 % yield. The free hydroxyl group in 90 was then subjected to an oxidation using the TEMPO method affording the aldehyde which was in turn oxidised with sodium chlorite to the corresponding acid. The acid was converted to the amide 91, making use of Staab's method, in which the acid was activated with CDI in dichloromethane to give the imidazolide, which upon reaction with ammonia furnished the amide 91 in an overall yield of 95 %. The required glycosyl acceptor 92 was obtained in quantitative yield by cleavage of the ester bond at position 5 under Zemplén conditions. Disaccharide formation was achieved employing the Jacquinet and Blatter method, which involves the use of glycosyl donor 67 and TMSOTf. No reaction was observed between this donor and acceptor 92, which may reflect the low nucleophilicity of the acceptor. On the contrary, glycosylation with acceptor 53 gave 68 (79 %). Deprotection of the silyl group in the disaccharide 68 was easily accomplished on treatment with a molar solution of TBAF in THF at RT affording 71 (89 %). Synthesis of the uronamide 72 was achieved after three major steps, in an overall yield of 98 %. Oxidation of the primary hydroxyl group in unit F to the corresponding aldehyde was accomplished with sodium hypochlorite and TEMPO. Oxidation of the crude aldehyde to the carboxylic acid with sodium chlorite followed by amide formation according to Staab gave 72. Removal of the isopropylidene group from 72 with trifluoroacetic acid (TFA) at RT furnished the diol 73 (89 %). Introduction of the carbamoyl group at C-4F position was achieved in two steps. Conversion of the diol 73 into the cyclic carbonate 76 with CDI in CH2Cl2 (84 %) and subsequent ring opening of this carbonate by bubbling a stream of gaseous ammonia into the CH2Cl2 solution at 0 °C gave 74 (62 %) as well as its isomer 77 (21 %). Dehalogenation of the N-trichloroacetyl group was intensively studied, but interactions of other functional groups in the studied substances could not be avoided. The base-labile carbonate in 76 and the carbamoyl group in urethane 74 were cleaved under the reaction conditions. Hydrolysis of 76 with 0.5 M LiOH in MeOH-THF (1:1) followed by acetylation gave 80 (73 %), while its reduction with NaBH4 in ethanol followed by acetylation gave 82 (60 °C, 85 %; RT, 83 %). On the other hand, reduction of 74 with NaBH4 in ethanol at 60 °C followed by acetylation gave 82 (78 %), while performing the reduction step at 5 °C (THF-MeOH 4:1) or at RT (ethanol or isopropanol) gave 80 in an average yield of 65 %. In a non reproducible reaction (NaBH4, EtOH, RT, then Ac2O, pyridine, RT), the desired compound 83 (42 %) was obtained accompanied by 82 (46 %) The reaction between the N-trichloroacetyl group and NaBH3CN was also fruitless. The phosphonate grouping was installed making use of Arbuzov reaction furnishing 85 (70 %). Trisaccharides could not be obtained from the oxazoline donor 42 (prepared from chitobiose octaacetate 86) through its reaction with acceptor 53. There was also no coupling product between the recently synthesized donor 88 and the acceptor 92. However, in this work, trisaccharide formation was achieved through the glycosylation reaction of donor 88 and acceptor 95 in 50 % yield (-30 °C, 1,2-dichloroethane, 3 Å, TMSOTf-TEA). Selective deprotection of the TBDMS group in compound 96 was accomplished at -10 °C with 1 eq of a molar solution of TBAF in THF. The free hydroxyl group of 97 was subjected to an oxidation using the TEMPO method affording the aldehyde. After oxidation of the aldehyde with sodium chlorite, the resulting carboxylic acid was converted according to Staab's method into the amide 93 in an overall yield of 95 % (based on 96). There were difficulties in converting the N-phthalimido group in 93 to the N-acetyl group which is necessary for biological activity of moenomycin-type compounds, since the reactions were accompanied by elimination of HBr. In conclusion, the synthetic methods employed in this work allow to prepare the di- and trisaccharides C-phosphonate analogues of moenomycin A12. / Synthese von Phosphonat-Analoga des Antibiotikums Moenomycin A12 Universität Leipzig, Dissertation Diese Arbeit enthält 130 Seiten, 73 Abbildungen, 1 Tabelle, 156 Literaturangaben Referat: Im Rahmen der vorliegenden Arbeit wurden C-Glycosid-Di- und Trisaccharid-Bausteine des Antibiotikums Moenomycin A12 ausgehend von b-D-Galactose-pentaacetat hergestellt. Das Ausgangmaterial wurde in D-Galactoheptonamid übergeführt. Die Einheit F des Disaccharidbausteins hat alle Substituenten, die die Einheit F des Moenomycins A12 hat. Der ausgearbeitete Syntheseweg sollte zur Synthese anderer Analoga geeignet sein.
3

Synthesis of Phosphonate Analogues of the Antibiotic Moenomycin A12

Abu Ajaj, Khalid 18 December 2002 (has links)
SUMMARY The moenomycin-type compounds are known to inhibit selectively the enzyme penicillin binding protein 1b (PBP 1b) that catalyses the transglycosylation reaction in the biosynthesis of bacterial cell wall peptidoglycan. The moenomycins (see moenomycin A12) have been shown to interfere with this biosynthetic step interacting with the enzyme(s). The moenomycins do not induce resistance readily. A weak point in this respect may, however, be the phosphate bond to unit F. Its cleavage by a yet poorly characterized enzyme is the only enzymatic degradation reaction of the moenomycins that is known to-date. With this in mind we started a programme aimed at synthesizing trisaccharide analogues of moenomycin A12 in which the phosphate oxygen at C-1 of unit F is replaced by a CH2 group. It seemed important to retain all other functional groups in ring F as present in moenomycin since they are known to be of major importance as far as antibiotic activity is concerned. It appeared that the commercially available and cheap b-D-galactose-pentaacetate 30 would be an interesting starting material for this synthesis. In this work, the synthesis began with the introduction of the C-glycoside appendage at position 1 according to Giannis et al., thus forming the allyl C-galactopyranoside 34, a substance that represents the first C-glycosyl backbone for the synthesis of the glycosyl acceptors. The total synthesis of the glycosyl acceptors is shown in Scheme 6.1. We wanted to convert the C-allyl glycoside 34 into its propenyl analogue. Attempts to achieve this with singlet oxygen and palladium-mediated reaction proved fruitless. On the other hand, ene reaction of 34 with 4-phenyltriazolin-3,5-dione in CH2Cl2 provided 56 in 83 % yield. Ozonolysis of this alkene (-70 °C, MeOH-CH2Cl2) and subsequent quenching with dimethyl sulfide, followed by reduction of the crude aldehyde with sodium acetoxyborohydride (prepared from NaBH4 and AcOH in THF) furnished the primary alcohol 35 (85 %). This alcohol was converted into the mesylate 60 (60 %), and this in turn into the bromide 61 (80 %) by heating it at 80 °C with tetrabutylammonium bromide in toluene. The acetate groups were hydrolysed using Zemplén conditions to furnish 62 quantitatively. The primary hydroxyl group in 62 was protected as a tBuPh2Si ether 63 (85 %) on reaction with TBDPSCl in DMF at 0 °C, and as a tBuMe2Si ether 94 (87 %) on reaction with TBDMSCl in DMF at 0 °C in the presence of imidazole. PTScatalysed isopropylidenation of the 3,4-diols 63 and 94 with 2,2-dimethoxypropane in dry acetone gave the 3,4-O-acetonide derivatives 53 (88 %) and 95 (90 %), respectively. On the other hand, the glycosyl acceptor 53 was converted into the glycosyl acceptor 92. The free hydroxyl group in compound 53 was protected as an acetate group on reaction with acetic anhydride in pyridine in the presence of DMAP giving 89 (88 %). The silyl ether in 89 was cleaved with a molar solution of TBAF in THF affording compound 90 in 87 % yield. The free hydroxyl group in 90 was then subjected to an oxidation using the TEMPO method affording the aldehyde which was in turn oxidised with sodium chlorite to the corresponding acid. The acid was converted to the amide 91, making use of Staab''s method, in which the acid was activated with CDI in dichloromethane to give the imidazolide, which upon reaction with ammonia furnished the amide 91 in an overall yield of 95 %. The required glycosyl acceptor 92 was obtained in quantitative yield by cleavage of the ester bond at position 5 under Zemplén conditions. Disaccharide formation was achieved employing the Jacquinet and Blatter method, which involves the use of glycosyl donor 67 and TMSOTf. No reaction was observed between this donor and acceptor 92, which may reflect the low nucleophilicity of the acceptor. On the contrary, glycosylation with acceptor 53 gave 68 (79 %). Deprotection of the silyl group in the disaccharide 68 was easily accomplished on treatment with a molar solution of TBAF in THF at RT affording 71 (89 %). Synthesis of the uronamide 72 was achieved after three major steps, in an overall yield of 98 %. Oxidation of the primary hydroxyl group in unit F to the corresponding aldehyde was accomplished with sodium hypochlorite and TEMPO. Oxidation of the crude aldehyde to the carboxylic acid with sodium chlorite followed by amide formation according to Staab gave 72. Removal of the isopropylidene group from 72 with trifluoroacetic acid (TFA) at RT furnished the diol 73 (89 %). Introduction of the carbamoyl group at C-4F position was achieved in two steps. Conversion of the diol 73 into the cyclic carbonate 76 with CDI in CH2Cl2 (84 %) and subsequent ring opening of this carbonate by bubbling a stream of gaseous ammonia into the CH2Cl2 solution at 0 °C gave 74 (62 %) as well as its isomer 77 (21 %). Dehalogenation of the N-trichloroacetyl group was intensively studied, but interactions of other functional groups in the studied substances could not be avoided. The base-labile carbonate in 76 and the carbamoyl group in urethane 74 were cleaved under the reaction conditions. Hydrolysis of 76 with 0.5 M LiOH in MeOH-THF (1:1) followed by acetylation gave 80 (73 %), while its reduction with NaBH4 in ethanol followed by acetylation gave 82 (60 °C, 85 %; RT, 83 %). On the other hand, reduction of 74 with NaBH4 in ethanol at 60 °C followed by acetylation gave 82 (78 %), while performing the reduction step at 5 °C (THF-MeOH 4:1) or at RT (ethanol or isopropanol) gave 80 in an average yield of 65 %. In a non reproducible reaction (NaBH4, EtOH, RT, then Ac2O, pyridine, RT), the desired compound 83 (42 %) was obtained accompanied by 82 (46 %) The reaction between the N-trichloroacetyl group and NaBH3CN was also fruitless. The phosphonate grouping was installed making use of Arbuzov reaction furnishing 85 (70 %). Trisaccharides could not be obtained from the oxazoline donor 42 (prepared from chitobiose octaacetate 86) through its reaction with acceptor 53. There was also no coupling product between the recently synthesized donor 88 and the acceptor 92. However, in this work, trisaccharide formation was achieved through the glycosylation reaction of donor 88 and acceptor 95 in 50 % yield (-30 °C, 1,2-dichloroethane, 3 Å, TMSOTf-TEA). Selective deprotection of the TBDMS group in compound 96 was accomplished at -10 °C with 1 eq of a molar solution of TBAF in THF. The free hydroxyl group of 97 was subjected to an oxidation using the TEMPO method affording the aldehyde. After oxidation of the aldehyde with sodium chlorite, the resulting carboxylic acid was converted according to Staab''s method into the amide 93 in an overall yield of 95 % (based on 96). There were difficulties in converting the N-phthalimido group in 93 to the N-acetyl group which is necessary for biological activity of moenomycin-type compounds, since the reactions were accompanied by elimination of HBr. In conclusion, the synthetic methods employed in this work allow to prepare the di- and trisaccharides C-phosphonate analogues of moenomycin A12. / Synthese von Phosphonat-Analoga des Antibiotikums Moenomycin A12 Universität Leipzig, Dissertation Diese Arbeit enthält 130 Seiten, 73 Abbildungen, 1 Tabelle, 156 Literaturangaben Referat: Im Rahmen der vorliegenden Arbeit wurden C-Glycosid-Di- und Trisaccharid-Bausteine des Antibiotikums Moenomycin A12 ausgehend von b-D-Galactose-pentaacetat hergestellt. Das Ausgangmaterial wurde in D-Galactoheptonamid übergeführt. Die Einheit F des Disaccharidbausteins hat alle Substituenten, die die Einheit F des Moenomycins A12 hat. Der ausgearbeitete Syntheseweg sollte zur Synthese anderer Analoga geeignet sein.
4

Calix[4]arènes chiraux contenant des groupes phosphine comme ligands pour la catalyse / Chiral phosphorus containing calix[4]arenes for asymmetric catalysis

Karpus, Andrii 24 January 2017 (has links)
La thèse est consacrée à la développement de méthodes efficaces pour la synthèse d'une nouvelle classe d'intrinsèquement chiral calix[4]arènes contenant du phosphore, phosphines et acides phosphoriques avec une certaine disposition mutuelle des groupes fonctionnels sur le bord inférieur du macrocycle, avec un potentiel activité catalytique. La façon optimale fot la synthèse de calix[4]arènes contenant du phosphore par la substitution progressive des hydroxyles phénoliques a été développé afin de concevoir des intrinsèquement chiral calix[4]arènes avec des types de remplacement ABHH et ABCH au bord inférieur du macrocycle. En utilisant ces techniques, la synthèse de la six catalyseurs et efficaces avec chiralité planaire a été réalisée. En utilisant des études de diffraction des rayons X a permis d'étudier la localisation spatiale des groupes fonctionnels. L'utilisation de la réaction de Mitsunobu autorisé à fournir une synthèse de la nouvelle "poche" -comme ligands - calix[4]arènes portant des fragments ferrocényle-phosphines chirales. L'efficacité des nouveaux ligands phosphine synthétisés a été confirmé par l'exemple du modèle de réaction Tsuji-Trost. intéressante dépendance du niveau de sélectivité de la taille du cation de métal de base ajoutée, en raison de l'effet de ligand de chélation du supramoléculaire a été observée. Calix[4]arènes acides phosphoriques a d'abord été appliqués comme organocatalyseurs la série de réactions modèles: aza-Diels-Alder, aza-Mukayiama réaction asymétrique et réaction d'ouverture d'époxydes anneau. Il a été constaté que la plupart des composés synthétisés présentent un degré notable de activitydue catalytique à des caractéristiques de chiralité interne. / The thesis is devoted to the developing of effective methods for the synthesis of new class of inherently chiral phosphorus-containing calix[4]arenes, phosphines and phosphoric acids with a certain mutual arrangement of functional groups on the lower rim of the macrocycle, with potential catalytic activity. The optimal way fot the synthesis of phosphorus-containing calix[4]arenes by the stepwise substitution of the phenolic hydroxyls was developed in order to design inherently chiral calix[4]arenes with ABHH and ABCH replacement types at the lower rim of the macrocycle. By using these techniques, synthesis of six analogues of known and effective catalysts with planar chirality was performed. Using X-ray diffraction studies allowed to investigate spatial location of functional groups. Using of Mitsunobu reaction allowed to provide synthesis of the new "pocket"-like ligands - calix[4]arenes bearing chiral ferrocenyl-phosphines moieties. The effectiveness of the synthesized new phosphine ligands was confirmed by the example of the model Tsuji-Trost reaction. Interesting dependence of the selectivity level on the metal cation size of added base, due to chelation effect of supramolecular ligand was observed. Calix[4]arenes phosphoric acids was first applied as organocatalysts the series of model reactions: aza-Diels-Alder reaction, aza-Mukaiyama asymmetric reaction and epoxides ring opening reaction. It was found that most of the synthesized compounds exhibit a noticeable level of catalytic activitydue to features of internal chirality.

Page generated in 0.0917 seconds