• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal profile and kinetic analysis of Arc-Reactor anode: Finite element analysis

Out, Hannu Heijke January 2014 (has links)
This study investigated the heat transfer within the anode material moving through and heated by an electric arc. The arc was a low current (< 16 A) atmospheric electric discharge between a carbon rod cathode, and a moving carbon felt anode. The carbon arc was a low current(<16 A) electric discharge between a cathode constructed of a carbon rod, and a moving carbon felt anode. The thermal profile within the anode material was predicted by a system of differential algebraic equations, adapted from the model developed by (Stark and Fricke, 1993). This set of equations was run using the software MATLAB R2011b, using a numerical integrator with consideration taken for sparsity. The change in degree of graphitisation was then predicted using the thermal profiles developed. This indicated that while the graphitisation of the surface of the felt exposed to the arc increased (from about 10% to about 99%) this effect did not penetrate far into the felt. At a depth of 0.3 mm there was very little increase in graphitisation (about 7% increase at slow movement rates, negligible at standard rates), indicating that this gaphitisation degree was unlikely to explain the improvement of battery cells produced using this material compared to non–arc treated material. Vaporisation of carbon due to the arc was then investigated as a possible explanation. With a similar activation energy to graphitisation a similar profile was obtained.

Page generated in 0.1507 seconds