• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mass Spectrometry-Based Identification of Ceramic-Bound Archaeological Protein Residues: Method Validation, Residue Taphonomy, and Prospects

Barker, Andrew Lewis 12 1900 (has links)
Despite the variety of successful reports of the preservation, recovery, and identification of archaeological proteins in general, there are few positive reports regarding mass spectrometry-based identification of ceramic-bound proteins. In large part, this shortage is due to the lack of consideration for the unique taphonomic histories of such residues and, in general, methods development. Further, because negative results are rarely published, there is no baseline to which results can be compared. This paper attempts to address these challenges via a multi-pronged approach that uses mass spectrometry and complementary approaches to evaluate ceramic-bound protein preservation in both controlled, actualistic experiments, and in archaeological artifacts. By comparing the results obtained from protein-spiked, experimentally-aged ceramic to those obtained from both faunal and ceramic archaeological materials, an enhanced perspective on protein preservation and subsequent recovery and identification is revealed. This perspective, focusing on taphonomy, reveals why negative results may be the norm for ceramic artifacts when non-targeted methods are employed, and provides insight into how further method development may improve the likelihood of obtaining positive results.

Page generated in 0.055 seconds