Spelling suggestions: "subject:"arching Action"" "subject:"erching Action""
1 |
Rational Modeling of Arching Action in Laterally Restrained BeamsWu, Sixian 19 March 2013 (has links)
It is well known that arching action in reinforced concrete slabs resulting from surrounding restraining elements is responsible for much greater collapse loads than those estimated considering flexural effects only. However, the subject needs to be better understood and simplified if it is to be reliably applied in broader practice. This thesis presents a rational treatment of the problem. By limiting the scope of investigation to one-way slab systems, for the first time an explicit method of calculating the load-carrying capacity of elastic- plastic slab strips with a laterally rigidly restrained boundary condition is derived. Application of the proposed model to specimens selected from four experiment programs proves its reliability in ultimate strength calculations. The proposed model is then employed in a parametric study of structural responses of deck slab strips. The parametric study shows that a longer span, lightly reinforced deck slab system is still adequate in strength if it is cast in higher strength concrete and sufficient lateral restraint is available.
|
2 |
Rational Modeling of Arching Action in Laterally Restrained BeamsWu, Sixian 19 March 2013 (has links)
It is well known that arching action in reinforced concrete slabs resulting from surrounding restraining elements is responsible for much greater collapse loads than those estimated considering flexural effects only. However, the subject needs to be better understood and simplified if it is to be reliably applied in broader practice. This thesis presents a rational treatment of the problem. By limiting the scope of investigation to one-way slab systems, for the first time an explicit method of calculating the load-carrying capacity of elastic- plastic slab strips with a laterally rigidly restrained boundary condition is derived. Application of the proposed model to specimens selected from four experiment programs proves its reliability in ultimate strength calculations. The proposed model is then employed in a parametric study of structural responses of deck slab strips. The parametric study shows that a longer span, lightly reinforced deck slab system is still adequate in strength if it is cast in higher strength concrete and sufficient lateral restraint is available.
|
3 |
Determining and Validating the Three-dimensional Load Path Induced by Arching Action in Bridge Deck SlabsBotticchio, Robert Michael 24 June 2014 (has links)
In this thesis, a load path caused by arching action in reinforced concrete slabs is described and validated using a three-dimensional model. Currently, the CHBDC enforces a 4 meter girder spacing requirement in the design of deck slabs. The aim of this thesis is to investigate the load path induced by arching action in deck slabs with a wide range of girder spacing. To do this, a two-dimensional model was developed to examine the path of horizontal stress and was validated using a FEM. A parametric study showed that girder spacing does not affect the development of restraining stress while cantilever width does. As well, cracking of the slab is necessary for arching action to occur. These results help with future development of a rational model to be used by bridge designers.
|
4 |
Examining the presence of arching action in edge-stiffened cantilever slab overhangs subjected to a static and fatigue wheel loadKlowak, Chad Steven 01 October 2015 (has links)
Engineers proposed the idea that arching action present may be present in bridge deck
cantilever slab overhangs, stiffened along their longitudinal free edge via a traffic barrier,
subjected to a wheel load. The experimental research program consisted of the design,
construction, and static as well as fatigue destructive testing of a full-scale innovative bridge
deck slab complete with two traffic barrier walls.
The observed experimental data provided extremely interesting findings that indicated a very
strong presence of arching action in edge-stiffened cantilever slab overhangs subjected to
static and fatigue wheel loads. Deflection profiles indicated curvatures that contradict
classical flexural behavior. Large tensile strain magnitudes on the bottom reinforcing mat in
all cantilever test locations as well as cracking patterns dictate behavior typical to arching
action. Top transverse strains measured did not agree with flexural theory and patterns
confirmed earlier research finding that the quantity of top transverse reinforcement may be
reduced. Compressive strains measured on the top surface of the cantilever contradicted
flexural theory and confirmed the presence of arching action. Punching shear modes of
failure observed in all test locations also strengthened the argument for the presence of
arching action. Theoretical and analytical modeling techniques were able to validate and
confirm the experimental test results.
Based on experimental research findings and analytical modeling researchers were able to
confirm a major presence of arching action in edge-stiffened cantilever slab overhangs
subjected to static and fatigue wheel loads. Recommendations include a proposed reduction
in top transverse reinforcement provided in the adjacent internal panel due to the presence
arching action that could contribute to a significant initial capital cost savings. Based on the
research findings, the report also suggests potential provisions to design codes that take into
account the presence of arching action. Further research and theoretical modeling is still
required to better understand the presence of arching action in edge-stiffened cantilever slab
overhangs. Additional testing and a demonstration project complete with civionics and
structural health monitoring will aid engineers in the implementation of the break-through
findings highlighted in this study. / February 2016
|
5 |
Determining and Validating the Three-dimensional Load Path Induced by Arching Action in Bridge Deck SlabsBotticchio, Robert Michael 24 June 2014 (has links)
In this thesis, a load path caused by arching action in reinforced concrete slabs is described and validated using a three-dimensional model. Currently, the CHBDC enforces a 4 meter girder spacing requirement in the design of deck slabs. The aim of this thesis is to investigate the load path induced by arching action in deck slabs with a wide range of girder spacing. To do this, a two-dimensional model was developed to examine the path of horizontal stress and was validated using a FEM. A parametric study showed that girder spacing does not affect the development of restraining stress while cantilever width does. As well, cracking of the slab is necessary for arching action to occur. These results help with future development of a rational model to be used by bridge designers.
|
6 |
Behaviour of reinforced concrete frame structure against progressive collapseHarry, Ofonime Akpan January 2018 (has links)
A structure subjected to extreme load due to explosion or human error may lead to progressive collapse. One of the direct methods specified by design guidelines for assessing progressive collapse is the Alternate Load Path method which involves removal of a structural member and analysing the structure to assess its potential of bridging over the removed member without collapse. The use of this method in assessing progressive collapse therefore requires that the vertical load resistance function of the bridging beam assembly, which for a typical laterally restrained reinforced concrete (RC) beams include flexural, compressive arching action and catenary action, be accurately predicted. In this thesis, a comprehensive study on a reliable prediction of the resistance function for the bridging RC beam assemblies is conducted, with a particular focus on a) the arching effect, and b) the catenary effect considering strength degradations. A critical analysis of the effect of axial restraint, flexural reinforcement ratio and span-depth ratio on compressive arching action are evaluated in quantitative terms. A more detailed theoretical model for the prediction of load-displacement behaviour of RC beam assemblies within the compressive arching response regime is presented. The proposed model takes into account the compounding effect of bending and arching from both the deformation and force points of view. Comparisons with experimental results show good agreement. Following the compressive arching action, catenary action can develop at a much larger displacement regime, and this action could help address collapse. A complete resistance function should adequately account for the catenary action as well as the arching effect. To this end, a generic catenary model which takes into consideration the strength degradation due to local failure events (e.g. rupture of bottom rebar or fracture of a steel weld) and the eventual failure limit is proposed. The application of the model in predicting the resistance function in beam assemblies with strength degradations is discussed. The validity of the proposed model is checked against predictions from finite element model and experimental tests. The result indicate that strength degradation can be accurately captured by the model. Finally, the above developed model framework is employed in investigative studies to demonstrate the application of the resistance functions in a dynamic analysis procedure, as well as the significance of the compressive arching effect and the catenary action in the progressive collapse resistance in different designs. The importance of an accurate prediction of the arching effect and the limiting displacement for the catenary action is highlighted.
|
Page generated in 0.1178 seconds