• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of Paleolimnology in Ecosystem Monitoring for Sirmilik National Park: Developing Indicators of Ecological Integrity

Devlin, Jane Erica 22 July 2010 (has links)
Water chemistry and bioindicators (diatoms and invertebrates) were examined for freshwater lakes, ponds and streams in two regions within Sirmilik National Park, northern Baffin Island, Nunavut. Significant differences were recorded between the water chemistry and diatom and invertebrate assemblages of the two regions. Modern diatom assemblages were explained mainly by specific conductivity, ORP, pH, temperature, elevation and distance from the coast. Paleolimnological techniques were applied to a sediment core from Lake BY14 on Bylot Island. Fossil diatom assemblages indicate increases in nutrients and temperature since 1935 AD. The diatom biostratigraphy does not show as large an increase in diversity and production since the middle 20th century as has been noted elsewhere, and this may be a reflection of the more nutrient-rich status of the lake relative to other Arctic lakes.
2

Applications of Paleolimnology in Ecosystem Monitoring for Sirmilik National Park: Developing Indicators of Ecological Integrity

Devlin, Jane Erica 22 July 2010 (has links)
Water chemistry and bioindicators (diatoms and invertebrates) were examined for freshwater lakes, ponds and streams in two regions within Sirmilik National Park, northern Baffin Island, Nunavut. Significant differences were recorded between the water chemistry and diatom and invertebrate assemblages of the two regions. Modern diatom assemblages were explained mainly by specific conductivity, ORP, pH, temperature, elevation and distance from the coast. Paleolimnological techniques were applied to a sediment core from Lake BY14 on Bylot Island. Fossil diatom assemblages indicate increases in nutrients and temperature since 1935 AD. The diatom biostratigraphy does not show as large an increase in diversity and production since the middle 20th century as has been noted elsewhere, and this may be a reflection of the more nutrient-rich status of the lake relative to other Arctic lakes.
3

INDIVIDUAL TRAIT MATCHING OF BUMBLEBEES (BOMBUS) AND FLOWERS ALONG AN ENVIRONMENTAL GRADIENT

Svedin, Johan Per Michael January 2022 (has links)
Insect pollinators serve a critical role in maintaining plant biodiversity and are especially susceptible to changes within their environment. To study the possible effects of seasonal variation in temperature, as well as climatic temperature increase on the plant-pollinator community, the relationship between bumblebee and flowering plant traits along an elevational gradient, representing warming-induced changes in plant community, were examined. Two hypotheses were tested; 1) if plant traits can predict visiting bumblebee proboscis length, and 2) if the relationship between plant traits and proboscis length is influenced by elevation, and the progression of the growing season. The study took place along an elevational gradient on Mt. Nuolja in Abisko National Park, Sweden. During surveys bumblebees were caught and measured. Flowers visited by captured bumblebees were collected, categorized by restrictiveness (i.e., whether or not the flower require a certain proboscis length, in order to access the nectar and pollen rewards) and floral traits measured (e.g., petal length). The results revealed that petal length was a significant predictor of bumblebee proboscis length, when taking restrictiveness into account. Furthermore, the relationship became weaker with increasing elevation for restrictive flowers but stronger for unrestrictive flowers. These findings show that trait-matching between bumblebees and flowers is an influential factor for flower selection and is affected by climatic temperature. This highlights the importance of considering individual-level traits when studying plant preference and creates a framework for assessing plant-pollinator networks. Future studies should examine additional traits that could explain the apparent size matching between unrestrictive flowers and proboscis.
4

DO BUMBLEBEES PARTITION AN ELEVATIONAL GRADIENT BY BODY SIZE?

Al-Hayali, Abdullah January 2022 (has links)
As the climate warms, Arctic bumblebee species face the loss of habitat and must deal with increased competition from southern species tracking their thermal and habitat niches north, for example Bombus terrestris. Previous studies demonstrate that bumblebees follow Bergmann’s rule, i.e., larger body sizes at higher latitudes, despite bumblebees not being considered truly ectothermic, as they can generate heat through muscular activity (i.e., beating their wings). This study seeks to confirm and understand the relationship between body size and temperature using an elevational gradient as a proxy for climate. In this study, I examined 13 plots (420-1164 m.a.s.l.) set along the 3.4 km transect up the slope of Mt. Nuolja in Abisko National Park, Sweden. For body size, I chose to use the commonly accepted proxy distance between the base of the wings (i.e., intertegular distance). For temperature, I chose the mean temperature at time of visitation. Results show that climate is a significant explanatory variable for bumblebee body size, with an overall increasing body size with increasing elevation (i.e., colder climate), although most of the variance is explained by caste, i.e., queens having a larger body size than workers. Body size also shows some correlation with day of capture, which can be explained by changes in environmental conditions (e.g., temperature, flowering plant species) during the growing season experienced by the different emerging times for the castes. Given that caste was the most useful explanatory variable for body size, future studies could look at a larger environmental gradient, for example, by sampling at multiple locations along the entire Scandes mountain range to see if the effects found are localized. Further, specific habitat and specific traits of preferred plants may also help to elucidate body-size differences between species and castes. For example, many bumblebee species’ castes emerge at a specific time of year when only certain flowering plant species in specific habitats are available. This important research would also help to illuminate whether bumblebees and the species of plants they pollinate remain synchronous as climate warming accelerates. Nevertheless, my results show an overall positive relationship between bumblebee body size and elevation, indicating that a warming climate will result in reduced body sizes among bumble bee species. Future studies will have to investigate what consequences this will have for Arctic bumblebee populations – and for the plants that rely on bumblebee visits for their pollination.
5

Do bumblebees patition an elevational gradient by body size?

Al-Hayali, Abdullah January 2022 (has links)
As the climate warms, Arctic bumblebee species face the loss of habitat and must deal with increased competition from southern species tracking their thermal and habitat niches north, for example Bombus terrestris. Previous studies demonstrate that bumblebees follow Bergmann’s rule, i.e., larger body sizes at higher latitudes, despite bumblebees not being considered truly ectothermic, as they can generate heat through muscular activity (i.e., beating their wings). This study seeks to confirm and understand the relationship between body size and temperature using an elevational gradient as a proxy for climate. In this study, I examined 13 plots (420-1164 m.a.s.l.) set along the 3.4 km transect up the slope of Mt. Nuolja in Abisko National Park, Sweden. For body size, I chose to use the commonly accepted proxy distance between the base of the wings (i.e., intertegular distance). For temperature, I chose the mean temperature at time of visitation. Results show that climate is a significant explanatory variable for bumblebee body size, with an overall increasing body size with increasing elevation (i.e., colder climate), although most of the variance is explained by caste, i.e., queens having a larger body size than workers. Body size also shows some correlation with day of capture, which can be explained by changes in environmental conditions (e.g., temperature, flowering plant species) during the growing season experienced by the different emerging times for the castes. Given that caste was the most useful explanatory variable for body size, future studies could look at a larger environmental gradient, for example, by sampling at multiple locations along the entire Scandes mountain range to see if the effects found are localized. Further, specific habitat and specific traits of preferred plants may also help to elucidate body-size differences between species and castes. For example, many bumblebee species’ castes emerge at a specific time of year when only certain flowering plant species in specific habitats are available. This important research would also help to illuminate whether bumblebees and the species of plants they pollinate remain synchronous as climate warming accelerates. Nevertheless, my results show an overall positive relationship between bumblebee body size and elevation, indicating that a warming climate will result in reduced body sizes among bumble bee species. Future studies will have to investigate what consequences this will have for Arctic bumblebee populations – and for the plants that rely on bumblebee visits for their pollination.
6

Individual trait matching of bumblebees (Bombus) and flowers along an environmental gradient

Svedin, Johan Per Michael January 2022 (has links)
Insect pollinators serve a critical role in maintaining plant biodiversity and are especially susceptible to changes within their environment. To study the possible effects of seasonal variation in temperature, as well as climatic temperature increase on the plant-pollinator community, the relationship between bumblebee and flowering plant traits along an elevational gradient, representing warming-induced changes in plant community, were examined. Two hypotheses were tested; 1) if plant traits can predict visiting bumblebee proboscis length, and 2) if the relationship between plant traits and proboscis length is influenced by elevation, and the progression of the growing season. The study took place along an elevational gradient on Mt. Nuolja in Abisko National Park, Sweden. During surveys bumblebees were caught and measured. Flowers visited by captured bumblebees were collected, categorized by restrictiveness (i.e., whether or not the flower require a certain proboscis length, in order to access the nectar and pollen rewards) and floral traits measured (e.g., petal length). The results revealed that petal length was a significant predictor of bumblebee proboscis length, when taking restrictiveness into account. Furthermore, the relationship became weaker with increasing elevation for restrictive flowers but stronger for unrestrictive flowers. These findings show that trait-matching between bumblebees and flowers is an influential factor for flower selection and is affected by climatic temperature. This highlights the importance of considering individual-level traits when studying plant preference and creates a framework for assessing plant-pollinator networks. Future studies should examine additional traits that could explain the apparent size matching between unrestrictive flowers and proboscis.

Page generated in 0.0971 seconds