• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of factors controlling pH in Arctic tundra soils

Thomas, Jacob January 2019 (has links)
In Arctic tundra soils pH serves as an important parameter related to several biotic parameters such as, plant and microbial community composition, biodiversity, nutrient dynamics and productivity. Both abiotic and biotic factors, for instance, base saturation (BS) and plant nutrient uptake may exert a control on soil pH, while it is still unclear to what extent different factors can explain soil pH across different tundra vegetation types. The aim of this study was to investigate to what extent different abiotic and biotic factors influence soil pH in the humus layer across different tundra vegetation types. To do so, eight different tundra vegetation types of which four were underlaid by permafrost (Arctic Alaska) and four with no permafrost (Arctic Sweden) were studied in detail with regard to different properties affecting soil pH. I found that BS was the main factor controlling soil pH across the different vegetation types regardless if the soil was underlain by permafrost or not. Factors, such as, ionic strength or soil water content could not explain any overall pH variation and did only significantly affect the heath soils. Further, the uptake of the most abundant base cations (Ca2+, Mg2+ and K+) from meadow and heath vegetation revealed a high difference between plant functional groups within the same vegetation types. The higher dominance of slow growing woody species in heath vegetation which had a lower uptake corresponded with a lower BC content (especially (Ca2+), pH and BS in the humus soil relative the meadow meanwhile the content of K+ was more than three times higher in heath. Overall, this study suggests that the degree of neutralization (base saturation) regulates pH either via the influence of bedrock and hydrogeochemistry and/or via plant traits that affects the uptake and turnover of base cations.

Page generated in 0.0848 seconds