• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flight coordination solutions for multirotor unmanned aerial vehicles

Fabra Collado, Francisco José 13 July 2020 (has links)
[EN] As the popularity and the number of Unmanned Aerial Vehicles (UAVs) increases, new protocols are needed to coordinate them when flying without direct human control, and to avoid that these UAVs collide with each other. Testing such novel protocols on real UAVs is a complex procedure that requires investing much time, money and research efforts. Hence, it becomes necessary to first test the developed solutions using simulation. Unfortunately, existing tools present significant limitations: some of them only simulate accurately the flight behavior of a single UAV, while some other simulators can manage several UAVs simultaneously, but not in real time, thus losing accuracy regarding the mobility pattern of the UAV. In this work we address such problem by introducing Arducopter Simulator (ArduSim), a novel simulation platform that allows controlling in soft real-time the flight and communications of multiple UAVs, being the developed protocols directly portable to real devices. Moreover, ArduSim includes a realistic model for the WiFi communications link between UAVs, which was proposed based on real experiments. The chances that two UAVs get close to each other during their flights is increasing as more and more of them populate our skies, causing concerns regarding potential collisions. Therefore, this thesis also proposes the Mission Based Collision Avoidance Protocol (MBCAP), a novel UAV collision avoidance protocol applicable to all types of multicopters flying autonomously. It relies on wireless communications in order to detect nearby UAVs, and to negotiate the procedure to avoid any potential collision. Experimental and simulation results demonstrate the validity and effectiveness of the proposed solution, which typically introduces a small overhead in the range of 15 to 42 seconds for each risky situation successfully handled. The previous solution aims at UAVs performing independent flights, but they can also form a swarm, where more constraints have to be met to avoid collisions among them, and to allow them to complete their task efficiently. Deploying an UAV swarm instead of a single UAV can provide additional benefits when, for example, cargo carrying requirements exceed the lifting power of a single UAV, or when the deployment of several UAVs simultaneously can accelerate the accomplishment of the mission, and broaden the covered area. To this aim, in this work we present the Mission-based UAV Swarm Coordination Protocol (MUSCOP), a solution that allows multiple UAVs to perfectly coordinate their flight when performing planned missions. Experimental results show that the proposed protocol is able to achieve a high degree of swarm cohesion independently of the flight formation adopted, and even in the presence of very lossy channels, achieving minimal synchronization delays and very low position offsets with regard to the ideal case. Currently, there are some other scenarios, such as search and rescue operations, where the deployment of manually guided swarms of UAVs can be necessary. In such cases, the pilot's commands are unknown a priori (unpredictable), meaning that the UAVs must respond in near real-time to the movements of the leader UAV in order to maintain swarm consistency. Hence, in this thesis we also propose the FollowMe protocol for the coordination of UAVs in a swarm where the swarm leader is controlled by a real pilot, and the other UAVs must follow it in real-time to maintain swarm cohesion. Simulation results show the validity of the proposed swarm coordination protocol, detailing the responsiveness limits of our solution, and finding the minimum distances between UAVs to avoid collisions. / [ES] A medida que la popularidad de los Vehículos Aéreos No Tripulados (VANTs) se incrementa, también se hacen necesarios nuevos protocolos para coordinarlos en vuelos sin control humano directo, y para evitar que colisionen entre sí. Probar estos nuevos protocolos en VANTs reales es un proceso complejo que requiere invertir mucho tiempo, dinero y esfuerzo investigador. Por lo tanto, es necesario probar en simulación las soluciones previamente implementadas. Lamentablemente, las herramientas actuales tienen importantes limitaciones: algunas simulan con precisión el vuelo de un único VANT, mientras que otros simuladores pueden gestionar varios VANTs simultáneamente aunque no en tiempo real, perdiendo por lo tanto precisión en el patrón de movilidad del VANT. En este trabajo abordamos este problema introduciendo Arducopter Simulator (ArduSim), una nueva plataforma de simulación que permite controlar en tiempo real el vuelo y la comunicación entre múltiples VANTs, permitiendo llevar los protocolos desarrollados a dispositivos reales con facilidad. Además, ArduSim incluye un modelo realista de un enlace de comunicaciones WiFi entre VANTs, el cual está basado en el resultado obtenido de experimentos con VANTs reales. La posibilidad de que dos VANTs se aproximen entre sí durante el vuelo se incrementa a medida que hay más aeronaves de este tipo surcando los cielos, introduciendo peligro por posibles colisiones. Por ello, esta tesis propone Mission Based Collision Avoidance Protocol (MBCAP), un nuevo protocolo de evitación de colisiones para VANTs aplicable a todo tipo de multicópteros mientras vuelan autónomamente. MBCAP utiliza comunicaciones inalámbricas para detectar VANTs cercanos y para negociar el proceso de evitación de la colisión. Los resultados de simulaciones y experimentos reales demuestran la validez y efectividad de la solución propuesta, que introduce un pequeño aumento del tiempo de vuelo de entre 15 y 42 segundos por cada situación de riesgo correctamente resuelta. La solución anterior está orientada a VANTs que realizan vuelos independientes, pero también pueden formar un enjambre, donde hay que cumplir más restricciones para evitar que colisionen entre sí, y para que completen la tarea de forma eficiente. Desplegar un enjambre de VANTs en vez de uno solo proporciona beneficios adicionales cuando, por ejemplo, la necesidad de carga excede la capacidad de elevación de un único VANT, o cuando al desplegar varios VANTs simultáneamente se acelera la misión y se cubre un área mayor. Con esta finalidad, en este trabajo presentamos el protocolo Mission-based UAV Swarm Coordination Protocol (MUSCOP), una solución que permite a varios VANTs coordinar perfectamente el vuelo mientras realizan misiones planificadas. Los resultados experimentales muestran que el protocolo propuesto permite al enjambre alcanzar un grado de cohesión elevado independientemente de la formación de vuelo adoptada, e incluso en presencia de un canal de comunicación con muchas pérdidas, consiguiendo retardos en la sincronización insignificantes y desfases mínimos en la posición con respecto al caso ideal. Actualmente hay otros escenarios, como las operaciones de búsqueda y rescate, donde el despliegue de enjambres de VANTs guiados manualmente puede ser necesario. En estos casos, las órdenes del piloto son desconocidas a priori (impredecibles), lo que significa que los VANTs deben responder prácticamente en tiempo real a los movimientos del VANT líder para mantener la consistencia del enjambre. Por ello, en esta tesis proponemos el protocolo FollowMe para la coordinación de VANTs en un enjambre donde el líder es controlado por un piloto, y el resto de VANTs lo siguen en tiempo real para mantener la cohesión del enjambre. Las simulaciones muestran la validez del protocolo de coordinación de enjambres propuesto, detallando los límites de la solución, y definiendo la distancia mínima entre VANTs para evita / [CA] A mesura que la popularitat dels Vehicles Aeris No Tripulats (VANTs) s'incrementa, també es fan necessaris nous protocols per a coordinar-los en vols sense control humà directe, i per a evitar que col·lisionen entre si. Provar aquests nous protocols en VANTs reals és un procés complex que requereix invertir molt de temps, diners i esforç investigador. Per tant, és necessari provar en simulació les solucions prèviament implementades. Lamentablement, les eines actuals tenen importants limitacions: algunes simulen amb precisió el vol d'un únic VANT, mentre que altres simuladors poden gestionar diversos VANTs simultàniament encara que no en temps real, perdent per tant precisió en el patró de mobilitat del VANT. En aquest treball abordem aquest problema introduint Arducopter Simulator (ArduSim), una nova plataforma de simulació que permet controlar en temps real el vol i la comunicació entre múltiples VANTs, permetent portar els protocols desenvolupats a dispositius reals amb facilitat. A més, ArduSim inclou un model realista d'un enllaç de comunicacions WiFi entre VANTs, que està basat en el resultat obtingut d'experiments amb VANTs reals. La possibilitat que dues VANTs s'aproximen entre si durant el vol s'incrementa a mesura que hi ha més aeronaus d'aquest tipus solcant els cels, introduint perill per possibles col·lisions. Per això, aquesta tesi proposa Mission Based Collision Avoidance Protocol (MBCAP), un nou protocol d'evitació de col·lisions per a VANTs aplicable a tota mena de multicòpters mentre volen autònomament. MBCAP utilitza comunicacions sense fils per a detectar VANTs pròxims i per a negociar el procés d'evitació de la col·lisió. Els resultats de simulacions i experiments reals demostren la validesa i efectivitat de la solució proposada, que introdueix un xicotet augment del temps de vol de entre 15 i 42 segons per cada situació de risc correctament resolta. La solució anterior està orientada a VANTs que realitzen vols independents, però també poden formar un eixam, on cal complir més restriccions per a evitar que col·lisionen entre si, i perquè completen la tasca de forma eficient. Desplegar un eixam de VANTs en comptes d'un només proporciona beneficis addicionals quan, per exemple, la necessitat de càrrega excedeix la capacitat d'elevació d'un únic VANT, o quan en desplegar diversos VANTs simultàniament s'accelera la missió i es cobreix una àrea major. Amb aquesta finalitat, en aquest treball presentem el protocol Mission-based UAV Swarm Coordination Protocol (MUSCOP), una solució que permet a diversos VANTs coordinar perfectament el vol mentre realitzen missions planificades. Els resultats experimentals mostren que el protocol proposat permet a l'eixam aconseguir un grau de cohesió elevat independentment de la formació de vol adoptada, i fins i tot en presència d'un canal de comunicació amb moltes pèrdues, aconseguint retards en la sincronització insignificants i desfasaments mínims en la posició respecte al cas ideal. Actualment hi ha altres escenaris, com les operacions de cerca i rescat, on el desplegament d'eixams de VANTs guiats manualment pot ser necessari. En aquests casos, les ordres del pilot són desconegudes a priori (impredictibles), el que significa que els VANTs han de respondre pràcticament en temps real als moviments del VANT líder per a mantindre la consistència de l'eixam. Per això, en aquesta tesi proposem el protocol FollowMe per a la coordinació de VANTs en un eixam on el líder és controlat per un pilot, i la resta de VANTs ho segueixen en temps real per a mantindre la cohesió de l'eixam. Les simulacions mostren la validesa del protocol de coordinació d'eixams proposat, detallant els límits de la solució, i definint la distància mínima entre VANTs per a evitar col·lisions. / Fabra Collado, FJ. (2020). Flight coordination solutions for multirotor unmanned aerial vehicles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/147857 / TESIS
2

Distributed management and coordination of UAV swarms based on infrastructureless wireless networks

Wubben, Jamie 26 October 2023 (has links)
[ES] Los Vehículos Aéreos no Tripulados (o drones) ya han demostrado su utilidad en una gran variedad de aplicaciones. Hoy en día, se utilizan para fotografía, cinematografía, inspecciones y vigilancia, entre otros. Sin embargo, en la mayoría de los casos todavía son controlados por un piloto, que como máximo suele estar volando un solo dron cada vez. En esta tesis, tratamos de avanzar en paso más allá en esta tecnología al permitir que múltiples drones con capacidad para despegue y aterrizaje vertical trabajen de forma sincronizada, como una sola entidad. La principal ventaja de realizar vuelos en grupo, comúnmente denominado enjambre, es que se pueden realizar tareas más complejas que utilizando un solo dron. De hecho, un enjambre permite cubrir más área en el mismo tiempo, ser más resistente, tener una capacidad de carga más alta, etc. Esto puede habilitar el uso de nuevas aplicaciones, o una mejor eficiencia para las aplicaciones existentes. Sin embargo, una parte clave es que los miembros del enjambre deben organizarse correctamente, ya que, durante el vuelo, diferentes perturbaciones pueden provocar que sea complicado mantener el enjambre como una unidad coherente. Una vez que se pierde esta coherencia, todos los beneficios previamente mencionados de un enjambre se pierden también. Incluso, aumenta el riesgo de colisiones entre los elementos del enjambre. Por lo tanto, esta tesis se centra en resolver algunos de estos problemas, proporcionando un conjunto de algoritmos que permitan a otros desarrolladores crear aplicaciones de enjambres de drones. Para desarrollar los algoritmos propuestos hemos incorporado mejoras al llamado ArduSim. Este simulador nos permite simular tanto la física de un dron como la comunicación entre drones con un alto grado de precisión. ArduSim nos permite implementar protocolos y algoritmos (bien probados) en drones reales con facilidad. Durante toda la tesis, ArduSim ha sido utilizado ampliamente. Su utilización ha permitido que las pruebas fueran seguras, y al mismo tiempo nos permitió ahorrar mucho tiempo, dinero y esfuerzo de investigación. Comenzamos nuestra investigación sobre enjambres asignando posiciones aéreas para cada dron en el suelo. Suponiendo que los drones están ubicados aleatoriamente en el suelo, y que necesitan alcanzar una formación aérea deseada, buscamos una solución que minimice la distancia total recorrida por todos los drones. Para ello se empezó con un método de fuerza bruta, pero rápidamente nos dimos cuenta de que, dada su alta complejidad, este método funciona mal cuando el número de drones aumenta. Por lo tanto, propusimos una heurística. Como en todas las heurísticas, se realizó un compromiso entre complejidad y precisión. Al simplificar el problema, encontramos que nuestra heurística era capaz de calcular una solución muy rápidamente sin aumentar sustancialmente la distancia total recorrida. Además, implementamos el algoritmo de Kuhn-Munkres (KMA), un algoritmo que ha demostrado proporcionar la respuesta exacta (es decir, reducir la distancia total recorrida) en el menor tiempo posible. Después de muchos experimentos, llegamos a la conclusión de que nuestra heurística es más rápida, pero que la solución proporcionada por el KMA es ligeramente más eficiente. En particular, aunque la diferencia en la distancia total recorrida es pequeña, el uso de KMA reduce el número de trayectorias de vuelo que se cruzan entre sí, lo cual es una métrica importante para las siguientes propuestas.[...] / [CA] Els vehicles aeris no tripulats (o drons) ja han demostrat la seua utilitat en una gran varietat d'aplicacions. Avui dia, s'utilitzen per a fotografia, cinematografia, inspeccions i vigilància, entre altres. No obstant això, en la majoria dels casos encara són controlats per un pilot, que com a màxim sol controlar el vol d'un sol dron cada vegada. En aquesta tesi, tractem d'avançar un pas més enllà en aquesta tecnologia, en permetre que múltiples drons amb capacitat per a l'enlairament i l'aterratge vertical treballen de forma sincronitzada, com una sola entitat. El principal avantatge de realitzar vols en grup, comunament denominats eixam, és que es poden fer tasques més complexes que utilitzant un sol dron. De fet, un eixam permet cobrir més àrea en el mateix temps, ser més resistent, tenir una capacitat de càrrega més alta, etc. Això pot habilitar l'ús de noves aplicacions, o una millor eficiència per a les aplicacions existents. No obstant això, una punt clau és que els membres de l'eixam han d'organitzar-se correctament, ja que, durant el vol, diferents pertorbacions poden provocar que siga complicat mantenir l'eixam com una unitat coherent. Una vegada que es perd aquesta coherència, tots els beneficis prèviament esmentats d'un eixam es perden també. Fins i tot, augmenta el risc de col·lisions entre els elements de l'eixam. Per tant, aquesta tesi se centra a resoldre alguns d'aquests problemes, proporcionant un conjunt d'algorismes que permeten a altres desenvolupadors crear aplicacions d'eixams de drons. Per a desenvolupar els algorismes proposats hem incorporat millores a l'anomenat ArduSim. Aquest simulador ens permet simular tant la física d'un dron com la comunicació entre drons amb un alt grau de precisió. ArduSim ens permet implementar protocols i algorismes (ben provats) en drons reals amb facilitat. Durant tota la tesi, ArduSim s'ha utilitzat àmpliament. El seu ús ha permès que les proves foren segures, i al mateix temps ens va permetre estalviar molt de temps, diners i esforç d'investigació. Per tant, es va utilitzar ArduSim per a cada bloc de construcció que vam desenvolupar. Comencem la nostra recerca sobre eixams assignant posicions aèries per a cada dron en terra. Suposant que els drons estan situats aleatòriament en terra i que necessiten assolir la formació aèria desitjada, cerquem una solució que minimitze la distància total recorreguda per tots els drons. Per a això, es va començar amb un mètode de força bruta, però ràpidament ens vam adonar que, atesa l'alta complexitat, aquest mètode funciona malament quan el nombre de drons augmenta. Per tant, vam proposar una heurística. Com en totes les heurístiques, es va fer un compromís entre complexitat i precisió. En simplificar el problema, trobem que la nostra heurística era capaç de calcular una solució molt ràpidament sense augmentar substancialment la distància total recorreguda. A més, vam implementar l'algorisme de Kuhn-Munkres (KMA), un algorisme que ha demostrat proporcionar la resposta exacta (és a dir, reduir la distància total recorreguda) en el menor temps possible. Després de molts experiments, arribem a la conclusió que la nostra heurística és més ràpida, però que la solució proporcionada pel KMA és lleugerament més eficient. En particular, encara que la diferència en la distància total recorreguda és xicoteta, l'ús de KMA redueix el nombre de trajectòries de vol que s'encreuen entre si, la qual cosa és una mètrica important per a les propostes següents.[...] / [EN] Unmanned Aerial Vehicles (UAVs) have already proven to be useful in many different applications. Nowadays, they are used for photography, cinematography, inspections, and surveillance. However, in most cases they are still controlled by a pilot, who at most is flying one UAV at a time. In this thesis, we try to take this technology one step further by allowing multiple Vertical Take-off and Landing (VTOL) UAVs to work together as one entity. The main advantage of this group, commonly referred to as a swarm, is that it can perform more complex tasks than a single UAV. When organized correctly, a swarm allows for: more area to be covered in the same time, more resilience, higher load capability, etc. A swarm can lead to new applications, or a better efficiency for existing applications. A key part, however, is that they should be organized correctly. During the flight, different disturbances will make it complicated to keep the swarm as one coherent unit. Once this coherency is lost, all the previously mentioned benefits of a swarm are lost as well. Even worse, the chance of a hazard increases. Therefore, this thesis focuses on solving some of these issues by providing a baseline of building blocks that enable other developers to create UAV swarm applications. In order to develop these building blocks, we improve a multi-UAV simulator called ArduSim. This simulator allows us to simulate both the physics of a UAV, and the communication between UAVs with a high degree of accuracy. This is a crucial part because it allows us to deploy (well tested) protocols and algorithms on real UAVs with ease. During the entirety of this thesis, ArduSim has been used extensively. It made testing safe, and allowed us to save a lot of time, money and research effort. We started by assigning airborne positions for each UAV on the ground. Assuming that the UAVs, are placed randomly on the ground, and that they need to reach a desired aerial formation, we searched for a solution that minimizes the total distance travelled by all the UAVs. We started with a brute-force method, but quickly realized that, given its high complexity, this method performs badly when the number of UAVs grows. Hence, we created a heuristic. As for all heuristics, a trade-off was made between complexity and accuracy. By simplifying the problem, we found that our heuristic was able to calculate a solution very quickly without increasing the total distance travelled substantially. Furthermore, we implemented the \ac{KMA}, an algorithm that has been proven to provide the exact answer (i.e. minimal total distance travelled) in the shortest time possible. After many experiments, we came to the conclusion that our heuristic is faster, but that the solution provided by the \ac{KMA} is slightly better. In particular, although the difference in total distance travelled is small, the \ac{KMA} reduces the numbers of flight paths crossing each other, which is an important metric in our next building block. Once we developed algorithms to assign airborne positions to each UAV on the ground, we started developing algorithms to take off all those UAVs. The objective of these algorithms is to reduce the time it takes for all the UAVs to reach their aerial position, while ensuring that all UAVs maintain a safe distance. The easiest solution is a sequential take-off procedure, but this is also the slowest approach. Hence, we improved it by first proposing a semi-sequential and later a semi-simultaneous take-off procedure. With this semi-simultaneous take-off procedure, we are able to reduce the takeoff time drastically without introducing any risk to the aircraft. [..] / Wubben, J. (2023). Distributed management and coordination of UAV swarms based on infrastructureless wireless networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/198887

Page generated in 0.0146 seconds