• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Trends in mass balance indexes connected to spatial location and precipitation : Remote sensing of 111 glaciers in the Everest region

Burström, Annika January 2012 (has links)
Studies of Himalayan glacial response to climatic forcing are few and a more comprehensive understanding of the relationship between the two is needed. This has been highlighted by recent controversies over future glacier change in this area. This study has therefore reviewed if there is a connection between glacier mass balance indexes and precipitation pattern in the Everest region. 111 glaciers were mapped in ArcGIS through remote sensing. Glacial total area, accumulation area as well as snowline altitudes and aspect were mapped. From this, the two mass balance indexes Accumulation Area Ratio, AAR and Area-Altitude Balance Ratios, AABR were derived. The intention was to search for patterns. In addition to this, an expedition to parts of the study area was conducted in March to April 2011. Hundreds of photographs of snow stratigraphy, debris cover ice snouts, accumulation etc were taken. The expedition also led to an understanding of the environment and of the glaciers which was helpful for the assessment of the remote sensing results. No pattern in glacier size, ELA, AAR or AABR was found that suggests a connection between mass balance and local precipitation pattern. The glaciers instead appear to be more sensitive to elevation. The largest glaciers and highest AAR and AABR are found at high - although not the highest - elevations.

Page generated in 0.081 seconds