• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Influence of Sputtering Pressure and Film Thickness on Metal Resistivity

Xu, Can Unknown Date
No description available.
2

The Influence of Sputtering Pressure and Film Thickness on Metal Resistivity

Xu, Can 06 1900 (has links)
Electrical resistivity is an important indicator of metal thin film quality. In this study, the influence of argon working pressure on the properties of metal thin films was evaluated, and the thickness effect on the resistivity of metal thin films was investigated. The sputtered thin film resistivity performances of seven metals as a function of argon pressure were measured, and the results turned out that the argon pressure was vital to film quality. Further investigation on sputtered chromium thin films using XRD, SEM and XPS revealed that the argon pressure influences the microstructure of sputtered metal thin films. Different microstructure is the reason for different resistivity performances, and John Thornton's "Zone Model" explains all these behaviours well. The resistivity of aluminum and chromium thin films with thickness from 15 to 150 nm were compared, the resistivity change significantly. The scaling trends are different for different metals. / Materials Engineering

Page generated in 0.0302 seconds