• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards understanding the effect of size variation on the aggressive and feeding behaviours ofjuvenile dusky kob Argyrosomus japonicus (Pisces: Sciaenidae)

Babane, Siviwe Elvis January 2018 (has links)
Many studies have been conducted on the effect of size-grading in other fish species. However, there is a paucity of scientific information on the effects of size variation on cannibalism of juvenile dusky kob. Thus, a study focusing on the effect of size variation on juvenile dusky kob aggressive and feeding (browsing) behaviours was conducted. Three separate groups of hatchery-reared juvenile dusky kob of were obtained from Oceanwise (Pty) Ltd for use in a series of three experimental trials. In all trials, juvenile fish of the same age were size-graded and the COV-value was used to determine the size variation. The focal fish (largest fish) was exposed to groups of fish with different size variation for 30-min. behavioural observations before and after feeding in randomised trials. The first experimental trial (Chapter 2) quantified the effect of increasing size variation and observation time on the aggressive and browsing behaviours of juvenile dusky kob. On average, juvenile dusky kob weighed 3.60 ± 0.68 g fish-1 and measured 5.8 ± 0.41 mm. Each focal fish was observed (a) before feeding in the morning, (b) 2 h after feeding, (c) 6 h after feeding and (d) 12 h after feeding. Fish increased browsing behaviours (averaging 6.60 ± 0.56) and decreased intimidating aggressive behaviours (18.60 ± 1.39) 12 h after feeding. Other aggressive behaviours occurred but did not differ between observation times. Aggressive and browsing behaviours positively correlated with size variation variables, predominantly, 12 h after feeding. An average frequency of 19 chases were observed positively correlated with size variation, followed by average frequencies of 17 body bites and browses, and 11 tail bites per 30 min. Some behaviours including average frequencies of 0.2 chases, 4 tail bites, 2.4 intimidating and 0.3 browsing behaviours negatively correlated with the size variation, generally closer to the last meal. These preliminary observations thus showed that fish have become hungry approximately 6-12 h after feeding and substituted certain behaviours for others as time after feeding passed and as size variation increased. The second experimental trial (Chapter 3) consisted of the observations further testing the relationship between aggressive behaviours and size variation of juveniles of dusky kob averaging 0.43 ± 0.27 g fish-1. The focal fish was exposed to groups of fish of four size variation (COV) treatments for observations before and 12 h after feeding. Aggressive behaviours positively correlated with size variation both before and 12 h after feeding. An average frequency of 437 body bites positively correlated more often with COV, followed by average frequencies of 365 intimidating behaviours and 199 tail bites per 30 min., respectively, before and 12 h after feeding. The least often exhibited aggressive behaviours averaged 26 chases while positively correlating with size variation on the times specified. An average frequency of 311 intimidating behaviours before and after feeding including average of 28 tail bites after feeding negatively correlated with size variation. This may relate to shift of behaviours depending on the needs and capacity of the fish. Apparently, aggressive fish can change its behaviour as a function of COV-values rather than the mean size of the other fish. The third trial (Chapter 4) investigated the effect of the aggressor’s (focal fish) size in relation its aggressive and browsing behaviours to other fish (non-focal fish). Juvenile fish used for this trial, on average, weighed 30 ± 7.63 g fish-1. Aggressive and browsing behaviours were observed in four treatments of a) high COV and mean weight below, b) low COV and mean weight less, c) high COV and mean weight equivalent to and d) low COV and mean weight higher than that of the focal fish. Increased frequencies of aggressive and browsing behaviours per 30 min. occurred in treatment A, sharing similar frequencies in treatment C, compared to the other treatments (B and D) which shared certain frequencies. The intimidating behaviours predominated, followed by browsing, body bites, chases and tail bites, respectively. The results of the overall study suggest that the time passed after feeding and increasing size variation and differences facilitated aggressive and browsing behaviours in juvenile dusky kob. Dusky kob showed increasing aggressive behaviours as early as in the first two weeks after hatching, averaging 0.43 ± 0.27 g fish-1 with the frequency correlating with size differences. Consistent size-grading technique in the same-age fish should be used to manage size variation associated with aggressive behaviours. The period of about 4-6 h after feeding may explain the noticeable increased aggressive and browsing behaviours. Thus, fish should be fed immediately before or after evacuation of their guts to maintain less-aggressive behaviours of juvenile dusky kob. Fish generally increased aggressive and browsing acts before and long time after feeding than closer to after feeding. The study has provided the fundamental scientific groundwork for fish farmers and future researchers can further explore size variation, time after feeding and gut evacuation rate as critical components of aggressive behaviours. The scientific knowledge of aggressive and cannibalistic behaviours has essential application in farming management to achieve improved survival and growth rates in juvenile fish.
2

The effect of dietary fish oil replacement with soybean oil on growth and health of dusky kob, Argyrosomus japonicus (Pisces: Sciaenidae)

Rossetti, Nani Adami January 2012 (has links)
Lipids are essential components for fish because they contain fatty acids that are vital for regular growth and health. Fish oil is rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are essential fatty acids for carnivorous fish, and therefore this product has traditionally been used as the main source of lipids in fish feeds. However, with declining fisheries resources worldwide and the rapid expansion of the aquaculture industry pressuring this finite resource, such ingredients are becoming less available and more expensive. It is therefore necessary to explore the utilization of ingredients that are sustainable and competitive alternatives to fish oil in marine finfish feeds. This work investigated the effects of the substitution of fish oil with soybean oil on the growth performance, feed efficiency, fatty acid composition of the liver tissue and some health parameters in juvenile dusky kob, Argyrosomus japonicus; an increasingly popular sciaenid marine aquaculture species in South Africa. Six diets (18 % total lipid and 46 % protein) with increasing percentage substitution of fish oil with soybean oil (1, 14, 28, 42, 56 and 70 %) were fed to juvenile kob. After 84 days of feeding these diets to the fish, no significant differences in fish length and weight between treatments were observed. However, there was a significant trend of a decrease in specific growth rate, ranging from (± standard error) 0.87 ± 0.06 to 0.72 ± 0.04 % body weight day⁻¹, and condition factor, ranging from 1.59 ± 0.03 to 1.54 ± 0.02, with increasing vegetable oil replacement in the diets between days 56 and 84. There were no differences in red blood cell count, haematocrit and haemoglobin concentration after 206 days of feeding. However, visceral fat index (VFI) increased significantly from 1.08 ± 0.17 % for fish fed diets with 28 % soybean oil, to 2.24 ± 0.15 % for fish fed diets with 70 % soybean oil. Similarly, hepatosomatic index (HSI) increased significantly from 0.84 ± 0.08 % to 1.80 ± 0.12 % in the control diet and the 56 % soybean oil diet, respectively. After 206 days of feeding, fish fed diets with 42 to 70 % soybean oil showed greater number of lipid vacuoles in the liver, which were also larger in size, and hepatocytes nuclei were displaced to the cell periphery. The fatty acid composition of the liver tissue strongly corresponded to the fatty acid composition of the diets. Linoleic acid accumulated in the liver of the fish fed increasing soybean oil in the diets. In contrast, EPA and DHA decreased from 13.63 to 1.97 %, and 14.34 to 3.28 %, respectively, in the liver tissue of fish fed diets with increasing soybean oil content; consequently the n-3/n-6 ratio was also significantly reduced with inclusion of vegetable oil in the diets. The trend of decreasing growth rate with increasing oil replacement towards the end of the trial corresponds with increases in VFI, HSI, as well as the fatty acid accumulation and lipid vacuoles in the liver. This suggests that dusky kob is less able to metabolise soybean oil at increased substitution levels which would account for the poorer growth at higher levels. The dependence of fish on dietary marine oil decreased significantly with each inclusion of soybean oil in the diets. Nonetheless, the calculations based on the nutrient ratio presented positive outcomes for all treatments, that is, values of marine oil dependency ratio were below one for all treatments. It is concluded that soybean oil can replace fish oil in formulated diets for dusky kob up to a level of 28 % of total dietary lipids, as evidenced by the good growth and feed efficiency, and no apparent negative health effects observed up to this level.

Page generated in 0.112 seconds