• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Distributed Surface Temperature and Energy Balance Model of a Semi-Arid Watershed

Washburne, James Clarke 05 1900 (has links)
A simple model of surface and sub -surface soil temperature was developed at the watershed scale ( -100 km2) in a semi -arid rangeland environment. The model consisted of a linear combination of air temperature and net radiation and assumed: 1) topography controls the spatial distribution of net radiation, 2) near- surface air temperature and incoming solar radiation are relatively homogeneous at the watershed scale and are available from ground stations and 3) soil moisture dominates transient soil thermal property variability. Multiplicative constants were defined to account for clear sky diffuse radiation, soil thermal inertia, an initially fixed ratio between soil heat flux and net radiation and exponential attenuation of solar radiation through a partial canopy. The surface temperature can optionally be adjusted for temperature and emissivity differences between mixed hare soil and vegetation canopies. Model development stressed physical simplicity and commonly available spatial and temporal data sets. Slowly varying surface characteristics, such as albedo, vegetation density and topography were derived from a series of Landsat TM images and a 7.5" USGS digital elevation model at a spatial resolution of 30 m. Diurnally variable atmospheric parameters were derived from a pair of ground meteorological stations using 30 -60 min averages. One site was used to drive the model, the other served as a control to estimate model error. Data collected as part of the Monsoon '90 and WG '92 field experiments over the ARS Walnut Gulch Experimental. Watershed in SE Arizona were used to validate and test the model. Point, transect and spatially distributed values of modeled surface temperature were compared with synchronous ground, aircraft and satellite thermal measurements. There was little difference between ground and aircraft measurements of surface reflectance and temperature which makes aircraft transects the preferred method to "ground truth" satellite observations. Mid- morning modeled surface temperatures were within 2° C of observed values at all but satellite scales, where atmospheric water vapor corrections complicate the determination of accurate temperatures. The utility of satellite thermal measurements and models to study various ground phenomena (eg. soil thermal inertia and surface energy balance) were investigated. Soil moisture anomalies were detectable, but were more likely associated with average near -surface soil moisture levels than individual storm footprints.
2

A distributed surface temperature and energy balance model of a semi-arid watershed.

Washburne, James Clarke. January 1994 (has links)
A simple model of surface and sub-surface soil temperature was developed at the watershed scale (-100 km²) in a semi-arid rangeland environment. The model consisted of a linear combination of air temperature and net radiation and assumed: (1) topography controls the spatial distribution of net radiation, (2) near-surface air temperature and incoming solar radiation are relatively homogeneous at the watershed scale and are available from ground stations and (3) soil moisture dominates transient soil thermal property variability. Multiplicative constants were defined to account for clear sky diffuse radiation, soil thermal inertia, an initially fixed ratio between soil heat flux and net radiation and exponential attenuation of solar radiation through a partial canopy. The surface temperature can optionally be adjusted for temperature and emissivity differences between mixed bare soil and vegetation canopies. Model development stressed physical simplicity and commonly available spatial and temporal data sets. Slowly varying surface characteristics, such as albedo, vegetation density and topography were derived from a series of Landsat TM images and a 7.5" USGS digital elevation model at a spatial resolution of 30 m. Diurnally variable atmospheric parameters were derived from a pair of ground meteorological stations using 30-60 min averages. One site was used to drive the model, the other served as a control to estimate model error. Data collected as part of the Monsoon '90 and WG '92 field experiments over the ARS Walnut Gulch Experimental Watershed in SE Arizona were used to validate and test the model. Point, transect and spatially distributed values of modeled surface temperature were compared with synchronous ground, aircraft and satellite thermal measurements. There was little difference between ground and aircraft measurements of surface reflectance and temperature which makes aircraft transects the preferred method to "ground truth" satellite observations. Mid-morning modeled surface temperatures were within 2° C of observed values at all but satellite scales, where atmospheric water vapor corrections complicate the determination of accurate temperatures. The utility of satellite thermal measurements and models to study various ground phenomena (e.g. soil thermal inertia and surface energy balance) were investigated. Soil moisture anomalies were detectable, but were more likely associated with average near-surface soil moisture levels than individual storm footprints.

Page generated in 0.1484 seconds