• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Brackish Water as a Factor in Development of the Safford Valley, Arizona, U.S.A.

Resnick, Sol D., DeCook, K. J. 01 1900 (has links)
For presentation at the International Symposium on Brackish Water as a Factor in Development, by the Desert Research Institute at Sede-Boqer at the Ben-Gurion University of the Negev, Beer-Sheva, Israel, January 5-10, 1975. / Introduction: The Safford Valley area lies along the Gila River in the southeastern part of the State of Arizona. The portion of the valley being considered, see Figure 1, is an intermontane trough averaging about 15 miles (24.2 kilometers) in width and about 30 miles (48.3 kilometers) in length. The cultivated lands lie along the Gila River and are 0.5 to 3.5 miles (0.8 to 5.6 kilometers) from the river. The approximately 14,000 inhabitants of the valley are primarily located in the municipalities, and Safford, the largest of the towns, was founded in 1875. Agriculture and agriculture-dependent activities, however, provide the mainstay of the Safford Valley economy accounting for approximately 63 percent of the export employment (State of Arizona, 1971). Like many valleys in arid regions, the Safford Valley, because of an inadequate supply of good quality water, has been forced to depend on ground water of notoriously poor quality. The purpose of this paper is to show how the limitation of available good quality water and the need to use brackish water affects agricultural practices and industrial development in the Safford Valley.
2

Asymptomatic infections of Euphorbia lathyris by Macrophomina phaseolina.

Himmel, Phyllis Terry January 1988 (has links)
In November of 1984 and 1985, Euphorbia lathyris was planted into a field naturally infested with Macrophomina phaseolina located at the Campbell Avenue Farm in Tucson, Arizona. Plants without foliar symptoms and rhizosphere soil were sampled regularly from emergence until the following May or June. Soil rhizosphere populations ranged from 0.7-3.0 cfu/g soil in 1985 to 8.0-24.1 cfu/g soil in 1986, and did not change significantly over either growing season (P > 0.05). Both the incidence of disease and the number of infection sites per cm of root increased significantly (P < 0.05) over each growing season and were not related to rhizosphere soil populations of M. phaseolina (P > 0.05). The distribution of infection sites along the tap root over both growing seasons remained the same in that most were located in the top 0-7 cm of tap root. Infected E. lathyris without apparent symptoms were subjected to low-water and high-temperature stress treatments in growth chambers. Root infection was not found to be dependent upon any stress. Lesion development was significantly dependent upon the imposition of any stress treatment, and further root colonization was significantly dependent upon low-water stress (P < 0.05). M. phaseolina was consistently recovered from asymptomatic roots. A consistently lower leaf water potential was measured on infected E. lathyris than from non-infected controls when no stress treatment was applied. Polyclonal antisera made against hyphae and microsclerotia of M. phaseolina was not successful in detecting this pathogen in E. lathyris by I-ELISA. Antisera applied to fresh thin sections of infected plant tissue was effective in staining hyphae of M. phaseolina when used with a second antibody conjugated to fluorescence isothiocyanate or to an enzyme (to which a substrate was added to "stain" hyphae).
3

Papago fields : arid lands ethnobotany and agricultural ecology

Nabhan, Gary Paul January 1983 (has links)
Papago Indian fields located in southern Arizona and northern Sonora, Mexico are examples of a food production strategy that was developed within the constraints of a water-limited environment. Although only a small percentage of the fields cultivated at the turn of the century remain in cultivation, extant fields are vestiges of an agricultural tradition that has persisted in arid lands for centuries. An examination of the documentary history of non-Indian observations of Papago agriculture and water control from 1697 to 1934 reveals numerous practices and features that are no longer apparent within or around remaining fields. Yet by learning from oral historical accounts of elderly Papago, and analyzing O'odham lexemes (native Papago terms) which guide farmers' management of fields, it is possible to gain a sense of folk science which Papago developed to successfully farm without permanent surface water reserves. Selected concepts from the folk science of the Papago are used as a point of departure in understanding the ecological processes which function within their fields. Standard field ecology methods were adapted to empirically test certain hypotheses relating to these ecological processes. Results include confirmation that Papago fields are situated in a variety of physiographic positions, and that ‘ak-ciñ arroyo mouth' farming is a misnomer. Papago crops exhibit many of the same drought-escaping adaptations as wild summer desert ephemerals for seed production during the brief summer rainy season, which varies from year to year in the date of its initiation. These adaptations greatly contribute to crop success. There are no significant differences in the diversity of herbaceous plants found in Papago fields compared to the diversity found in adjacent, uncultivated environments. Of the many nutrients analyzed in cultivated and uncultivated floodplain soils, only potassium was significantly richer in fields than in uncultivated floodplains; other differences were statistically insignificant. Floodwashed organic detritus, rather than the floodwaters themselves, appear to play the major role in renewing field soil fertility in certain localities. It is concluded that indigenous concepts which have long guided the management of traditional agricultural systems are of heuristic value in understanding how these farming systems function ecologically.
4

The performance of selected small grain cultivars under an irrigation gradient

Ashley, Roger Orrin, 1953- January 1989 (has links)
Differential adaptations of barley (Hordeum vulgare L.) and wheat (Triticum spp.) genotypes suggest that they be evaluated under multi-environmental conditions. The objectives of this study were to determine if small grain genotypes, bred for various moisture conditions, respond differently in terms of yield, water use, and rooting pattern to contrasting moisture conditions. Eight small grain genotypes were compared under a gradient of water from 89 to 404 mm (plus 254 mm of stored water) in a field study at Marana, AZ. A barley bred for low input conditions had greater root density in the subsoil and used moisture earlier in the season when compared to a high input barley (WestBred Gustoe). The cultivars bred for high input conditions required more water for optimum yield compared to those bred for low input conditions.

Page generated in 0.0908 seconds