• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mutation and Loss of Heterozygosity in an Individual of the Root-infecting Fungus Armillaria Gallica in a Mixed Hardwood Forest

Catona, Stefan 21 March 2012 (has links)
Long-lived individuals of the opportunistic fungal pathogen Armillaria gallica arise in single mating events, and then grow vegetatively to occupy large territories including multiple woody substrates. In effect, this leaves a spatial record of mutation, the detection of which would allow new inferences about how fungal individuals grow and infect their hosts. In this thesis, I first identified a large individual of A. gallica in eastern Ontario. I then searched for genetic variation within this individual by focusing on the tandemly repeated rRNA gene cluster and four microsatellite markers that are variable in the A. gallica population. I discovered a loss of heterozygosity (LOH) in the rRNA gene-cluster region, forming two genotypes that show significant spatial clustering in a Mantel test. My M.Sc. thesis research serves as a baseline for a genome-wide study of the mutational dynamic within the vegetative growth phase of this large and old Armillaria individual.
2

Mutation and Loss of Heterozygosity in an Individual of the Root-infecting Fungus Armillaria Gallica in a Mixed Hardwood Forest

Catona, Stefan 21 March 2012 (has links)
Long-lived individuals of the opportunistic fungal pathogen Armillaria gallica arise in single mating events, and then grow vegetatively to occupy large territories including multiple woody substrates. In effect, this leaves a spatial record of mutation, the detection of which would allow new inferences about how fungal individuals grow and infect their hosts. In this thesis, I first identified a large individual of A. gallica in eastern Ontario. I then searched for genetic variation within this individual by focusing on the tandemly repeated rRNA gene cluster and four microsatellite markers that are variable in the A. gallica population. I discovered a loss of heterozygosity (LOH) in the rRNA gene-cluster region, forming two genotypes that show significant spatial clustering in a Mantel test. My M.Sc. thesis research serves as a baseline for a genome-wide study of the mutational dynamic within the vegetative growth phase of this large and old Armillaria individual.

Page generated in 0.0676 seconds