Spelling suggestions: "subject:"aromatic akoxides"" "subject:"aromatic cpoxides""
1 |
Alkyl Radical Adducts of Aromatic N-Oxides as Hydrogen-Abstracting Agents: The Reactivity of Phenazine-N,N′-Dioxide-Methyl Radical AdductRazskazovskiy, Yuriy, Close, David M. 23 October 2006 (has links)
An O-methylated analog of protonated phenazine-di-N-oxide radical anion abstracts hydrogen from primary and secondary alcohols in a slow (k1 < 500 M-1 s-1) bimolecular reaction. No kinetic evidence has been found for the unimolecular release of free methoxyl radicals through the homolytic N-OMe bond cleavage in these species. DFT calculations at the UB3LYP 6-31G(d) level indicate that protonated and O-alkylated radical anions of pyrazine, quinoxaline and phenazine di-N-oxides are close analogues of aromatic nitroxyl radicals with the highest spin density localized on the oxygen and nitrogen of the nitrone moiety.
|
2 |
Metal oxide-facilitated oxidation of antibacterial agentsZhang, Huichun 08 July 2004 (has links)
Metal oxide-facilitated transformation is likely an important degradation pathway of antibacterial agents at soil-water interfaces. Phenolic disinfectants (triclosan and chlorophene), fluoroquinolones (FQs), and aromatic N-oxides are of particular concern due to their widespread usage, potential toxicity and frequent detection in the environment. Results of the present study show that the above antibacterial agents are highly susceptible to metal oxide-facilitated oxidation.
The interfacial reactions exhibit complex reaction kinetics, which are affected by solution pH, the presence of co-solutes, surface properties of metal oxides, and structural characteristics of antibacterial agents. Adsorption of the antibacterial agents to Mn and Fe oxide surfaces generally proceeds faster than oxidation reactions of these compounds by Mn and Fe oxides, especially in the case of Fe oxides.
Reaction intermediates and end products are identified by GC/MS, LC/MS and/or FTIR. Structurally-related model compounds are examined to facilitate reaction site and mechanism elucidation. On the basis of experimental results and literature, reaction schemes are proposed. In general, the antibacterial agent is adsorbed to the oxide surface, forming a precursor complex. Electrons are transferred within the precursor complex from the antibacterial agent to the oxide, followed by releasing of the radical intermediates which undergo further reactions to generate oxidation products. The precursor complex formation and electron transfer are likely rate-limiting.
For triclosan, phenoxy radicals are critical intermediates to form oxidation products through three pathways (i.e., radical coupling, further oxidation of the radical, and breakdown of an ether bond within the radical). The first two pathways are also operative in the oxidation of chlorophene. For FQs, oxidation generates radical intermediates that are most likely centered on the inner N in the piperazine ring. The radical intermediates then undergo three major pathways (i.e., radical coupling, N-dealkylation, and hydroxylation) to yield a variety of products. For aromatic N-oxides, a N-oxide radical intermediate is generated upon oxidation by MnO2, followed by the loss of oxygen from the N-oxide moiety and the formation of a hydroxyl group at the C-atom adjacent to the N-oxide moiety.
Overall, a fundamental understanding of the reaction mechanisms between three classes of antibacterial agents and metal oxides has been obtained.
|
Page generated in 0.0719 seconds