• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular and cellular mechanisms of aromatic hydrocarbon axonopathy

Kim, Min Sun 28 November 2001 (has links)
Hydrocarbon solvents are widely used in the production of paints, adhesives, dyes, polymers, plastics, textiles, printing inks, agricultural products and pharmaceuticals. While the neuropathic potential of aliphatic solvents was shown in the 1970s, little is known about the neuropathic potential of aromatic solvents. The present study examines such solvents, 1,2-diethylbenzene (DEB) and its metabolite 1,2-diacetylbenzene (DAB), to determine (a) the neuropathological evidence for peripheral neuropathy in rodents treated with 1,2-DAB, (b) the neurochemical basis for the neurotoxic properties of this compound, and (c) the structural requirements for nerve fiber damage. The properties of 1,2-DAB and 2,5- hexanedione (HD) are also compared. A key finding of this thesis is that 1,2-DAB induces a 2,5-HD-like pattern of nerve damage of motor and sensory axons with focal swellings containing neurofilaments. Whereas nerve damage begins distally in 2,5-HD intoxication, with 1,2-DAB treatment axonal swellings begin intraspinally and in the proximal ventral roots of motor nerve fibers. A second key finding is the reactivity of 1,2-DAB with amino acids, notably lysine, a property that is shared with 2,5-HD. 1,2-DAB and 2,5-HD react with amino acids and proteins to form blue and yellow chromophores, respectively. Relative to 2,5-HD, 1,2-DAB is three orders of magnitude more reactive in forming high-molecular-weight species. 1,2-DAB treatment of spinal cord slices in vitro and intact sciatic nerve in vivo showed that neurofilament proteins react more readily than beta-tubulin. The heavy and medium subunits of neurofilament protein were more reactive than the light subunit. The reactivity of these four axonal proteins was in proportion to their lysine content. These data are consistent with selective accumulation of neurofilaments in giant axonal swellings. In summary, these studies have shown a relationship between the chromogenic and neuropathic properties of two gamma-diketones, one aliphatic (2,5-HD) the other aromatic (1,2-DAB). These studies are relevant to occupational and public health for at least two reasons. First, urinary chromogens generated by neuropathic aliphatic and aromatic hydrocarbons could serve as biological markers of exposure to solvents with neuropathic potential, and second, other chromogenic solvents (such as tetralin) should be considered for neuropathic potential. / Graduation date: 2002

Page generated in 0.1031 seconds