• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Results on Non-Club Isomorphic Aronszajn Trees

Chavez, Jose 08 1900 (has links)
In this dissertation we prove some results about the existence of families of Aronszajn trees on successors of regular cardinals which are pairwise not club isomorphic. The history of this topic begins with a theorem of Gaifman and Specker in the 1960s which asserts the existence from ZFC of many pairwise not isomorphic Aronszajn trees. Since that result was proven, the focus has turned to comparing Aronszajn trees with respect to isomorphisms on a club of levels, instead of on the entire tree. In the 1980s Abraham and Shelah proved that the Proper Forcing Axiom implies that any two Aronszajn trees on the first uncountable cardinal are club isomorphic. This theorem was generalized to higher cardinals in recent work of Krueger. Abraham and Shelah also proved that the opposite holds under diamond principles. In this dissertation we address the existence of pairwise not club isomorphic Aronszajn trees on higher cardinals from a variety of cardinal arithmetic and diamond principle assumptions. For example, on the successor of a regular cardinal, assuming GCH and the diamond principle on the critical cofinality, there exists a large collection of special Aronszajn trees such that any two of them do not contain club isomorphic subtrees.
2

Club Isomorphisms between Subtrees of Aronszajn Trees

Kaiser, Jill Renee 07 1900 (has links)
In this paper, we prove that it is consistent with ZFC that GCH holds and that every pair of normal Aronszajn trees contain club isomorphic subtrees.
3

Stromová vlastnost kardinálů / Tree property at more cardinals

Stejskalová, Šárka January 2014 (has links)
In this thesis we study the Aronszajn and special Aronszajn trees, their existence and nonexistence. We introduce the most common definition of special Aronszajn tree and some of its generalizations and we examine the relations between them. Next we study the notions of the tree property and the weak tree property at a given regular cardinal κ. The tree property means that there are no Aronszajn trees at κ and the weak tree property means that there are no special Aronszajn trees at κ. We define and compare two forcings, the Mitchell forcing and the Grigorieff forcing, and we use them to obtain a model in which the (weak) tree property holds at a given cardinal. At the end, we show how to use the Mitchell forcing to construct a model in which the (weak) tree property holds at more than one cardinal. 1

Page generated in 0.0347 seconds