Spelling suggestions: "subject:"arquimedean copula"" "subject:"arquimedeana copula""
1 |
Modelo bayesiano para dados de sobrevivência com riscos semicompetitivos baseado em cópulas / Bayesian model for survival data with semicompeting risks based on copulasPatiño, Elizabeth González 23 March 2018 (has links)
Motivados por um conjunto de dados de pacientes com insuficiência renal crônica (IRC), propomos uma nova modelagem bayesiana que envolve cópulas da família Arquimediana e um modelo misto para dados de sobrevivência com riscos semicompetitivos. A estrutura de riscos semicompetitivos é bastante comum em estudos clínicos em que dois eventos são de interesse, um intermediário e outro terminal, de forma tal que a ocorrência do evento terminal impede a ocorrência do intermediário mas não vice-versa. Nesta modelagem provamos que a distribuição a posteriori sob a cópula de Clayton é própria. Implementamos os algoritmos de dados aumentados e amostrador de Gibbs para a inferência bayesiana, assim como os criterios de comparação de modelos: LPML, DIC e BIC. Realizamos um estudo de simulação para avaliar o desempenho da modelagem e finalmente aplicamos a metodologia proposta para analisar os dados dos pacientes com IRC, além de outros de pacientes que receberam transplante de medula óssea. / Motivated by a dataset of patients with chronic kidney disease (CKD), we propose a new bayesian model including the Arquimedean copula and a mixed model for survival data with semicompeting risks. The structure of semicompeting risks appears frequently in clinical studies where two-types of events are involved: a nonterminal and a terminal event such that the occurrence of terminal event precludes the occurrence of the non-terminal event but not viceversa. In this work we prove that the posterior distribution is proper when the Clayton copula is used. We implement the data augmentation algorithm and Gibbs sampling for the bayesian inference, as well as some bayesian model selection criteria: LPML, BIC and DIC. We carry out a simulation study for assess the model performance and finally, our methodology is illustrated with the chronic kidney disease study.
|
2 |
Modelo bayesiano para dados de sobrevivência com riscos semicompetitivos baseado em cópulas / Bayesian model for survival data with semicompeting risks based on copulasElizabeth González Patiño 23 March 2018 (has links)
Motivados por um conjunto de dados de pacientes com insuficiência renal crônica (IRC), propomos uma nova modelagem bayesiana que envolve cópulas da família Arquimediana e um modelo misto para dados de sobrevivência com riscos semicompetitivos. A estrutura de riscos semicompetitivos é bastante comum em estudos clínicos em que dois eventos são de interesse, um intermediário e outro terminal, de forma tal que a ocorrência do evento terminal impede a ocorrência do intermediário mas não vice-versa. Nesta modelagem provamos que a distribuição a posteriori sob a cópula de Clayton é própria. Implementamos os algoritmos de dados aumentados e amostrador de Gibbs para a inferência bayesiana, assim como os criterios de comparação de modelos: LPML, DIC e BIC. Realizamos um estudo de simulação para avaliar o desempenho da modelagem e finalmente aplicamos a metodologia proposta para analisar os dados dos pacientes com IRC, além de outros de pacientes que receberam transplante de medula óssea. / Motivated by a dataset of patients with chronic kidney disease (CKD), we propose a new bayesian model including the Arquimedean copula and a mixed model for survival data with semicompeting risks. The structure of semicompeting risks appears frequently in clinical studies where two-types of events are involved: a nonterminal and a terminal event such that the occurrence of terminal event precludes the occurrence of the non-terminal event but not viceversa. In this work we prove that the posterior distribution is proper when the Clayton copula is used. We implement the data augmentation algorithm and Gibbs sampling for the bayesian inference, as well as some bayesian model selection criteria: LPML, BIC and DIC. We carry out a simulation study for assess the model performance and finally, our methodology is illustrated with the chronic kidney disease study.
|
Page generated in 0.0316 seconds