• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transcriptome analysis of Artemisia annua glandular trichomes and functional study of AaWD40 in arabidopsis. / CUHK electronic theses & dissertations collection

January 2010 (has links)
Artemisia annua L. is a common type of wormwood that grows throughout the world. Artemisinin, a terpene compound in A. annua, has recently been recognized as the most promising antimalaria drug. Artemisinin and other types of terpenoids are synthesized and accumulated in glandualr trichomes that appear on the surface of leaf, stem and flower bud. To identify new genes involved in artemisinin biosynthesis and trichome function in A. annua, a normalized glandular trichome cDNA collection was sequenced by Roche GS FLX pyrosequencing system. Two sequencing runs generated totally 85M nucleotides which were further assembled into 190,377 unigenes (42,678 contigs and 147,699 sigletons). Putative functions were assigned to the unigenes based on Blast search against GeneBank database. Many terpene biosynthesis pathway genes were identified from the pyrosequencing ESTs. Together with other identified A. annua terpene pathway genes, a global view of terpene biosynthesis in glandular trichomes of A. annua were re-established. Meanwhile, a WD repeat protein, AaWD40, which show high amino acid sequence similarity with its Arabidopsis ortholog, AtTTG1 (AT5G24520) was identified. To investigate the functional relevance of AaWD40 to its Arabidopsis counterpart, genetic complementation test using Arabidopsis mutants was conducted. When AaWD40 was transformed into Arabidopsis transparent testa glabrous1 (ttg1-1) mutant, the anthocyanins and proanthocyanidin (PAs) production in seeds were restored, and the trichomeless phenotype of ttg1-1 mutant was rescued. In addition, over-expression of AaWD40 and AtTTG1 modulated the expression of WUS and CLVs genes which are required to maintain the stem-cell niche of Arabidopsis shoot apex. Transcriptomic profiling of transgenic Arabidopsis over-expressing AaWD40, TTG1, or ttg1-1 mutant revealed lists of genes modulated by these two WD40 genes homologue and gene ontology (GO) analysis suggested that the top-ranked categories are defense, stress response and developmental programme. We hypothesize that WD40 repeat protein act as a crucial regulatory factor in a wide variety of cellular functions in A. thaliana. / Wang, Wei. / Advisers: Guo Dianjing; Jiang Liwen. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 82-105). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
2

Transcriptome based gene discovery in Artemisia annua L.

January 2009 (has links)
Qi, Yan. / Thesis submitted in: December 2008. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 63-79). / Abstracts in English and Chinese. / ACKNOWLEDGEMENTS --- p.III / ABSTRACT --- p.IV / TABLE OF CONTENTS --- p.VII / LIST OF ABBREVIATIONS --- p.XI / Chapter CHAPTER 1. --- LITERATURE REVIEW --- p.1 / Chapter 1.1 --- the Plant of Artemisia annua L --- p.1 / Chapter 1.2 --- The disease of malaria --- p.3 / Chapter 1.2.1 --- The life cycle of Plasmodium parasites --- p.4 / Chapter 1.2.2 --- The Artemisinin-based combination therapies (ACTs) for the treatment of malaria --- p.5 / Chapter 1.3 --- Artemisinin --- p.8 / Chapter 1.3.1 --- The content and distribution of artemisinin --- p.8 / Chapter 1.3.2 --- The mechanism of artemisinin action --- p.9 / Chapter 1.3.2.1 --- The proposed non-specific mechanisms of action --- p.10 / Chapter 1.3.2.2 --- The proposed parasite-specific mechanisms of action --- p.11 / Chapter 1.3.3 --- The biosynthesis of artemisnin in vivo --- p.12 / Chapter 1.3.4 --- The biosynthesis of artemisinin in vitro --- p.16 / Chapter 1.4 --- Trichomes --- p.18 / Chapter 1.4.1 --- Non-glandular trichomes --- p.19 / Chapter 1.4.2 --- Glandular trichome --- p.20 / Chapter 1.4.3 --- Trichomes of Artemisia annua L --- p.21 / Chapter 1.5 --- DNA Sequencing Methods --- p.24 / Chapter 1.5.1 --- The basic principle of pyrosequencing --- p.25 / Chapter 1.5.2 --- 454 pyrosequencing and its application --- p.27 / Chapter CHAPTER 2. --- MATERIALS AND METHODS --- p.32 / Chapter 2.1 --- Chemicals --- p.32 / Chapter 2.2 --- Plant materials --- p.32 / Chapter 2.3 --- Preparation of the cDNA sample for 454 sequencing --- p.33 / Chapter 2.3.1 --- Scanning electron microscopy --- p.33 / Chapter 2.3.2 --- Isolation of glandular trichomes --- p.34 / Chapter 2.3.3 --- cDNA synthesis and normalization --- p.34 / Chapter 2.4 --- 454-EST SEQUENCING AND PROCESSING --- p.36 / Chapter 2.5 --- Analysis of 454 sequencing data --- p.37 / Chapter 2.6 --- Establishment of regeneration system of A. annua L --- p.37 / Chapter 2.6.1 --- Shoots induction from leaf discs --- p.37 / Chapter 2.6.2 --- The sensitivity of the explants to Kanamycin --- p.38 / Chapter 2.6.3 --- Rooting of the regenerated seedlings --- p.38 / Chapter CHAPTER 3. --- RESULTS AND DISCUSSION --- p.40 / Chapter 3.1 --- Glandular trichome isolation and cDNA preparation --- p.40 / Chapter 3.1.1 --- The distribution of glandular trichomes on A. annua --- p.40 / Chapter 3.1.2 --- The isolation of glandular trichomes --- p.42 / Chapter 3.1.3 --- The preparation of ds cDNA for 454 sequencing --- p.43 / Chapter 3.2 --- Pre-process of 454 pyrosequencing data --- p.44 / Chapter 3.3 --- Functional annotation of the 454-EST data --- p.47 / Chapter 3.4 --- Comparison of two sequencing runs --- p.49 / Chapter 3.5 --- Analysis of the 454 ESTs involved in secondary metabolisms --- p.50 / Chapter 3.6 --- Selection of the candidate genes --- p.55 / Chapter 3.7 --- Establishment of regeneration system of A. annua L --- p.57 / Chapter 3.7.1 --- Shoots induction from leaf discs --- p.57 / Chapter 3.7.2 --- Roots induction from shoots --- p.57 / Chapter 3.7.3 --- Sensitivity of A. annua to Kan --- p.59 / Chapter CHAPTER 4. --- CONCLUSION --- p.61 / REFERENCES --- p.63

Page generated in 0.0555 seconds