• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 570
  • 336
  • 39
  • 21
  • 15
  • 12
  • 11
  • 9
  • 8
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1192
  • 1192
  • 1192
  • 570
  • 554
  • 421
  • 157
  • 134
  • 129
  • 128
  • 120
  • 110
  • 94
  • 93
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Medical Outcome Prediction: A Hybrid Artificial Neural Networks Approach

Shadabi, Fariba, N/A January 2007 (has links)
This thesis advances the understanding of the application of artificial neural networks ensemble to clinical data by addressing the following fundamental question: What is the potentiality of an ensemble of neural networks models as a filter and classifier in a complex clinical situation? A novel neural networks ensemble classification model called Rules and Information Driven by Consistency in Artificial Neural Networks Ensemble (RIDCANNE) is developed for the purpose of prediction of medical outcomes or events, such as kidney transplants. The proposed classification model is based on combination of initial data preparations, preliminary classification by ensembles of Neural Networks, and generation of new training data based on criteria of highly accuracy and model agreement. Furthermore, it can also generate decision tree classification models to provide classification of data and the prediction results. The case studies described in this thesis are from a kidney transplant database and two well-known collections of benchmark data known as the Pima Indian Diabetes and Wisconsin Cancer datasets. An implication of this study is that further attention needs to be given to both data collection and preparation stages. This study revealed that even neural network ensemble models that are known for their strong generalization ability might not be able to provide a high level of accuracy for complex, noisy and incomplete clinical data. However, by using a selective subset of data points, it is possible to improve the overall accuracy. In summary, the research conducted for this thesis advances the current clinical data preparation and classification techniques in which the task is to extract patterns that contain higher information content from a sea of noisy and incomplete clinical data, and build accurate and transparent classifiers. The RIDC-ANNE approach improves an analyst�s ability to better understand the data. Furthermore, it shows great promise for use in clinical decision making systems. It can provide us with a valuable data mining tool with great research and commercial potential.
102

A Comparison of Various Interpolation Techniques for Modeling and Estimation of Radon Concentrations in Ohio

Gummadi, Jayaram January 2013 (has links)
No description available.
103

Prediction of muscle activity during loaded movements of the upper limb

Tibold, R., Fuglevand, A. J. January 2015 (has links)
BACKGROUND: Accurate prediction of electromyographic (EMG) signals associated with a variety of motor behaviors could, in theory, serve as activity templates needed to evoke movements in paralyzed individuals using functional electrical stimulation. Such predictions should encompass complex multi-joint movements and include interactions with objects in the environment. METHODS: Here we tested the ability of different artificial neural networks (ANNs) to predict EMG activities of 12 arm muscles while human subjects made free movements of the arm or grasped and moved objects of different weights and dimensions. Inputs to the trained ANNs included hand position, hand orientation, and thumb grip force. RESULTS: The ability of ANNs to predict EMG was equally as good for tasks involving interactions with external loads as for unloaded movements. The ANN that yielded the best predictions was a feed-forward network consisting of a single hidden layer of 30 neural elements. For this network, the average coefficient of determination (R2 value) between predicted and actual EMG signals across all nine subjects and 12 muscles during movements that involved episodes of moving objects was 0.43. CONCLUSION: This reasonable accuracy suggests that ANNs could be used to provide an initial estimate of the complex patterns of muscle stimulation needed to produce a wide array of movements, including those involving object interaction, in paralyzed individuals.
104

Data driven modelling for environmental water management

Syed, Mofazzal January 2007 (has links)
Management of water quality is generally based on physically-based equations or hypotheses describing the behaviour of water bodies. In recent years models built on the basis of the availability of larger amounts of collected data are gaining popularity. This modelling approach can be called data driven modelling. Observational data represent specific knowledge, whereas a hypothesis represents a generalization of this knowledge that implies and characterizes all such observational data. Traditionally deterministic numerical models have been used for predicting flow and water quality processes in inland and coastal basins. These models generally take a long time to run and cannot be used as on-line decision support tools, thereby enabling imminent threats to public health risk and flooding etc. to be predicted. In contrast, Data driven models are data intensive and there are some limitations in this approach. The extrapolation capability of data driven methods are a matter of conjecture. Furthermore, the extensive data required for building a data driven model can be time and resource consuming or for the case predicting the impact of a future development then the data is unlikely to exist. The main objective of the study was to develop an integrated approach for rapid prediction of bathing water quality in estuarine and coastal waters. Faecal Coliforms (FC) were used as a water quality indicator and two of the most popular data mining techniques, namely, Genetic Programming (GP) and Artificial Neural Networks (ANNs) were used to predict the FC levels in a pilot basin. In order to provide enough data for training and testing the neural networks, a calibrated hydrodynamic and water quality model was used to generate input data for the neural networks. A novel non-linear data analysis technique, called the Gamma Test, was used to determine the data noise level and the number of data points required for developing smooth neural network models. Details are given of the data driven models, numerical models and the Gamma Test. Details are also given of a series experiments being undertaken to test data driven model performance for a different number of input parameters and time lags. The response time of the receiving water quality to the input boundary conditions obtained from the hydrodynamic model has been shown to be a useful knowledge for developing accurate and efficient neural networks. It is known that a natural phenomenon like bacterial decay is affected by a whole host of parameters which can not be captured accurately using solely the deterministic models. Therefore, the data-driven approach has been investigated using field survey data collected in Cardiff Bay to investigate the relationship between bacterial decay and other parameters. Both of the GP and ANN models gave similar, if not better, predictions of the field data in comparison with the deterministic model, with the added benefit of almost instant prediction of the bacterial levels for this recreational water body. The models have also been investigated using idealised and controlled laboratory data for the velocity distributions along compound channel reaches with idealised rods have located on the floodplain to replicate large vegetation (such as mangrove trees).
105

Distributed online machine learning for mobile care systems

Prueller, Hans January 2014 (has links)
Telecare and especially Mobile Care Systems are getting more and more popular. They have two major benefits: first, they drastically improve the living standards and even health outcomes for patients. In addition, they allow significant cost savings for adult care by reducing the needs for medical staff. A common drawback of current Mobile Care Systems is that they are rather stationary in most cases and firmly installed in patients’ houses or flats, which makes them stay very near to or even in their homes. There is also an upcoming second category of Mobile Care Systems which are portable without restricting the moving space of the patients, but with the major drawback that they have either very limited computational abilities and only a rather low classification quality or, which is most frequently, they only have a very short runtime on battery and therefore indirectly restrict the freedom of moving of the patients once again. These drawbacks are inherently caused by the restricted computational resources and mainly the limitations of battery based power supply of mobile computer systems. This research investigates the application of novel Artificial Intelligence (AI) and Machine Learning (ML) techniques to improve the operation of 2 Mobile Care Systems. As a result, based on the Evolving Connectionist Systems (ECoS) paradigm, an innovative approach for a highly efficient and self-optimising distributed online machine learning algorithm called MECoS - Moving ECoS - is presented. It balances the conflicting needs of providing a highly responsive complex and distributed online learning classification algorithm by requiring only limited resources in the form of computational power and energy. This approach overcomes the drawbacks of current mobile systems and combines them with the advantages of powerful stationary approaches. The research concludes that the practical application of the presented MECoS algorithm offers substantial improvements to the problems as highlighted within this thesis.
106

Τεχνητά νευρωνικά δίκτυα και εφαρμογές στα συστήματα αυτόματου ελέγχου

Θεοδόση - Κόκκινου, Λάουρα 13 October 2013 (has links)
Τα Τεχνητά Νευρωνικά Δίκτυα είναι μια επιστημονική περιοχή η οποία έχει αναπτυχθεί κατά τις τελευταίες δεκαετίες και επικαλύπτει όλες σχεδόν τις θετικές επιστήμες και την μηχανολογία. Τα Νευρωνικά Δίκτυα αποτελούνται από ένα σύνολο απλών, διασυνδεδεμένων και προσαρμοστικών μονάδων οι οποίες δημιουργούν ένα παράλληλο και πολύπλοκο υπολογιστικό μοντέλο. Στην ουσία είναι προγράμματα που υλοποιούνται στους ηλεκτρονικούς υπολογιστές. Μέχρι σήμερα έχουν χρησιμοποιηθεί σε πολλές εφαρμογές και σε προβλήματα που οι γνωστοί τρόποι αντιμετώπισής τους παρουσιάζουν δυσκολίες, με αποτέλεσμα την αναγκαιότητα των Τεχνητών Νευρωνικών Δικτύων. Η εργασία αυτή αποτελείται από έξι κεφάλαια. Στο πρώτο κεφάλαιο κάνουμε μια εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. Αναφέρουμε τις βασικές αρχές τους και την αντιστοιχία τους με τα βιολογικά δίκτυα. Το δεύτερο κεφάλαιο ασχολείται με το δίκτυο Perceptron. Ξεκινάμε με το πιο απλό μοντέλο, τον αισθητήρα και συνεχίζουμε με τα πολυεπίπεδα Νευρωνικά Δίκτυα Perceptron. Αναφέρουμε δύο μεθόδους εκπαίδευσης, τη μέθοδο οπισθοδιάδοσης του λάθους και τον κανόνα Δέλτα. Στο τρίτο κεφάλαιο μελετάμε άλλα είδη δικτύων, όπως τα αναδρομικά δίκτυα, το δίκτυο Hopfield, το δίκτυο SOM και το δίκτυο RBF. Το τέταρτο κεφάλαιο αναφέρεται στον νευρωνικό έλεγχο και στις αρχιτεκτονικές των νευρωνικών ελεγκτών. Στο πέμπτο κεφάλαιο εξετάζουμε κάποιες συγκεκριμένες εφαρμογές των Τεχνητών Νευρωνικών Δικτύων σε διάφορα συστήματα ελέγχου. Στο έκτο κεφάλαιο αναφέρουμε τα συμπεράσματα καθώς και μελλοντικές επεκτάσεις των ΤΝΔ. / Artificial Neural Networks are a research area which has developed over the past decades. Neural Networks consist of a set of simple, interconnected and adaptive plants that create a parallel and complex computational model. They are essentially programs implemented in computers. They have been used in many applications and problems that are very difficult to be solved otherwise. This work consists of six chapters. In the first chapter we make an introduction to Artificial Neural Networks. We mention the basic principles and their correlation with biological networks. The second chapter deals with the network Perceptron. We start with the simplest model, the sensor and continue with the multilayer Neural Network Perceptron. We mention two training methods, the method of error back-propagation and delta rule. In the third chapter we consider other types of networks such as the recurrent networks, Hopfield network, the network SOM and the RBF network. The fourth chapter deals with the neural control and the architectures of neural controllers. In the fifth chapter we examine some specific applications of Artificial Neural Networks in several control systems. The sixth chapter refers to the conclusions of this work and future evolution of ANN.
107

FORECASTING THE WORKLOAD WITH A HYBRID MODEL TO REDUCE THE INEFFICIENCY COST

Pan, Xinwei 01 January 2017 (has links)
Time series forecasting and modeling are challenging problems during the past decades, because of its plenty of properties and underlying correlated relationships. As a result, researchers proposed a lot of models to deal with the time series. However, the proposed models such as Autoregressive integrated moving average (ARIMA) and artificial neural networks (ANNs) only describe part of the properties of time series. In this thesis, we introduce a new hybrid model integrated filter structure to improve the prediction accuracy. Case studies with real data from University of Kentucky HealthCare are carried out to examine the superiority of our model. Also, we applied our model to operating room (OR) to reduce the inefficiency cost. The experiment results indicate that our model always outperforms compared with other models in different conditions.
108

Modeling and Simulation of Solar Energy Harvesting Systems with Artificial Neural Networks

Gebben, Florian January 2016 (has links)
Simulations are a good method for the verification of the correct operation of solar-powered sensor nodes over the desired lifetime. They do, however, require accurate models to capture the influences of the loads and solar energy harvesting system. Artificial neural networks promise a simplification and acceleration of the modeling process in comparison to state-of-the-art modeling methods. This work focuses on the influence of the modeling process's different configurations on the accuracy of the model. It was found that certain parameters, such as the network's number of neurons and layers, heavily influence the outcome, and that these factors need to be determined individually for each modeled harvesting system. But having found a good configuration for the neural network, the model can predict the supercapacitor's charge depending on the solar current fairly accurately. This is also true in comparison to the reference models in this work. Nonetheless, the results also show a crucial need for improvements regarding the acquisition and composition of the neural network's training set.
109

Combined sensor of dielectric constant and visible and near infrared spectroscopy to measure soil compaction using artificial neural networks

Al-Asadi, Raed January 2014 (has links)
Soil compaction is a widely spread problem in agricultural soils that has negative agronomic and environmental impacts. The former may lead to poor crop growth and yield, whereas the latter may lead to poor hydraulic properties of soils, and high risk to flooding, soil erosion and degradation. Therefore, the elimination of soil compaction must be done on regular bases. One of the main parameters to quantify soil compaction is soil bulk density (BD). Mapping of within field variation in soil BD will be a main requirement for within field management of soil compaction. The aim of this research was to develop a new approach for the measurement of soil BD as an indicator of soil compaction. The research relies on the fusion of data from visible and near infrared spectroscopy (vis-NIRS), to measure soil gravimetric moisture content (ω), with frequency domain reflectometry (FDR) data to measure soil volumetric moisture content (θv). The values of the estimated ω and θv, for the same undisturbed soil samples were collected from selected locations, textures, soil moisture contents and land use systems to derive soil BD. A total of 1013 samples were collected from 32 sites in the England and Wales. Two calibration techniques for vis-NIRS were evaluated, namely, partial least squares regression (PLSR) and artificial neural networks (ANN). ThetaProbe calibration was performed using the general formula (GF), soil specific calibration (SSC), the output voltage (OV) and artificial neural networks (ANN). ANN analyses for both ω and θv properties were based either on a single input variable or multiple input variables (data fusion). Effects of texture, moisture content, and land use on the prediction accuracy on ω, θv and BD were evaluated to arrive at the best experimental conditions for the measurement of BD with the proposed new system. A prototype was developed and tested under laboratory conditions and implemented in-situ for mapping of ω, θv and BD. When using the entire dataset (general data set), results proved that high measurement accuracy can be obtained for ω and θv with PLSR and the best performing traditional calibration method of the ThetaProbe with R2 values of 0.91 and 0.97, and root mean square error of prediction (RMSEp) of 0.027 g g-1 and 0.019 cm3 cm-3, respectively. However, the ANN – data fusion method resulted in improved accuracy (R2 = 0.98 and RMSEp = 0.014 g g-1 and 0.015 cm3 cm-3, respectively). This data fusion approach gave the best accuracy for BD assessment when only vis-NIRS spectra and ThetaProbe V were used as an input data (R2 = 0.81 and RMSEp = 0.095 g cm-3). The moisture level (L) impact on BD prediction revealed that the accuracy improved with soil moisture increasing, with RMSEp values of 0.081, 0.068 and 0.061 g cm-3, for average ω of 0.11, 0.20 and 0.28 g g-1, respectively. The influence of soil texture was discussed in relation with the clay content in %. It was found that clay positively affected vis-NIRS accuracy for ω measurement and no obvious impact on the dielectric sensor readings was observed, hence, no clear influence of the soil textures on the accuracy of BD prediction. But, RMSEp values of BD assessment ranged from 0.046 to 0.115 g cm-3. The land use effect of BD prediction showed measurement of grassland soils are more accurate compared to arable land soils, with RMSEp values of 0.083 and 0.097 g cm-3, respectively. The prototype measuring system showed moderate accuracy during the laboratory test and encouraging precision of measuring soil BD in the field test, with RMSEp of 0.077 and 0.104 g cm-3 of measurement for arable land and grassland soils, respectively. Further development of the prototype measuring system expected to improve prediction accuracy of soil BD. It can be concluded that BD can be measured accurately by combining the vis-NIRS and FDR techniques based on an ANN-data fusion approach.
110

DESIGN AND OPTIMIZATION OF PERISTALTIC MICROPUMPS USING EVOLUTIONARY ALGORITHMS

Bhadauria, Ravi 26 August 2009 (has links)
A design optimization based on coupled solid–fluid analysis is investigated in this work to achieve specific flow rate through a peristaltic micropump. A micropump consisting of four pneumatically actuated nozzle/diffuser shaped moving actuators on the sidewalls is considered for numerical study. These actuators are used to create pressure difference in the four pump chambers, which in turn drives the fluid through the pump in one direction. Genetic algorithms along with artificial neural networks are used for optimizing the pump geometry and the actuation frequency. A simple example with moving walls is considered for validation by developing an exact analytical solution of Navier–Stokes equation and comparing it with numerical simulations. Possible applications of these pumps are in microelectronics cooling and drug delivery. Based on the results obtained from the fluid–structure interaction analysis, three optimized geometries result in flow rates which match the predicted flow rates with 95% accuracy. These geometries need further investigation for fabrication and manufacturing issues.

Page generated in 0.0609 seconds