• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 1
  • Tagged with
  • 246
  • 246
  • 246
  • 122
  • 91
  • 89
  • 64
  • 44
  • 38
  • 38
  • 36
  • 32
  • 31
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Neural Tabula Rasa: Foundations for Realistic Memories and Learning

Perrine, Patrick R 01 June 2023 (has links) (PDF)
Understanding how neural systems perform memorization and inductive learning tasks are of key interest in the field of computational neuroscience. Similarly, inductive learning tasks are the focus within the field of machine learning, which has seen rapid growth and innovation utilizing feedforward neural networks. However, there have also been concerns regarding the precipitous nature of such efforts, specifically in the area of deep learning. As a result, we revisit the foundation of the artificial neural network to better incorporate current knowledge of the brain from computational neuroscience. More specifically, a random graph was chosen to model a neural system. This random graph structure was implemented along with an algorithm for storing information, allowing the network to create memories by creating subgraphs of the network. This implementation was derived from a proposed neural computation system, the Neural Tabula Rasa, by Leslie Valiant. Contributions of this work include a new approximation of memory size, several algorithms for implementing aspects of the Neural Tabula Rasa, and empirical evidence of the functional form for memory capacity of the system. This thesis intends to benefit the foundations of learning systems, as the ability to form memories is required for a system to inductively learn.
132

Semantic Structuring Of Digital Documents: Knowledge Graph Generation And Evaluation

Luu, Erik E 01 June 2024 (has links) (PDF)
In the era of total digitization of documents, navigating vast and heterogeneous data landscapes presents significant challenges for effective information retrieval, both for humans and digital agents. Traditional methods of knowledge organization often struggle to keep pace with evolving user demands, resulting in suboptimal outcomes such as information overload and disorganized data. This thesis presents a case study on a pipeline that leverages principles from cognitive science, graph theory, and semantic computing to generate semantically organized knowledge graphs. By evaluating a combination of different models, methodologies, and algorithms, the pipeline aims to enhance the organization and retrieval of digital documents. The proposed approach focuses on representing documents as vector embeddings, clustering similar documents, and constructing a connected and scalable knowledge graph. This graph not only captures semantic relationships between documents but also ensures efficient traversal and exploration. The practical application of the system is demonstrated in the context of digital libraries and academic research, showcasing its potential to improve information management and discovery. The effectiveness of the pipeline is validated through extensive experiments using contemporary open-source tools.
133

MORP: Monocular Orientation Regression Pipeline

Gunderson, Jacob 01 June 2024 (has links) (PDF)
Orientation estimation of objects plays a pivotal role in robotics, self-driving cars, and augmented reality. Beyond mere position, accurately determining the orientation of objects is essential for constructing precise models of the physical world. While 2D object detection has made significant strides, the field of orientation estimation still faces several challenges. Our research addresses these hurdles by proposing an efficient pipeline which facilitates rapid creation of labeled training data and enables direct regression of object orientation from a single image. We start by creating a digital twin of a physical object using an iPhone, followed by generating synthetic images using the Unity game engine and domain randomization. Our deep learning model, trained exclusively on these synthetic images, demonstrates promising results in estimating the orientations of common objects. Notably, our model achieves a median geodesic distance error of 3.9 degrees and operates at a brisk 15 frames per second.
134

A Heuristic Evolutionary Method for the Complementary Cell Suppression Problem

Herrington, Hira B. 04 February 2015 (has links)
Cell suppression is a common method for disclosure avoidance used to protect sensitive information in two-dimensional tables where row and column totals are published along with non-sensitive data. In tables with only positive cell values, cell suppression has been demonstrated to be non-deterministic NP-hard. Therefore, finding more efficient methods for producing low-cost solutions is an area of active research. Genetic algorithms (GA) have shown to be effective in finding good solutions to the cell suppression problem. However, these methods have the shortcoming that they tend to produce a large proportion of infeasible solutions. The primary goal of this research was to develop a GA that produced low-cost solutions with fewer infeasible solutions created at each generation than previous methods without introducing excessive CPU runtime costs. This research involved developing a GA that produces low-cost solutions with fewer infeasible solutions produced at each generation; and implementing selection and replacement operations that maintained genetic diversity during the evolution process. The GA's performance was tested using tables containing 10,000 and 100,000 cells. The primary criterion for the evaluation of effectiveness of the GA was total cost of the complementary suppressions and the CPU runtime. Experimental results indicate that the GA-based method developed in this dissertation produced better quality solutions than those produced by extant heuristics. Because existing heuristics are very effective, this GA-based method was able to surpass them only modestly. Existing evolutionary methods have also been used to improve upon the quality of solutions produced by heuristics. Experimental results show that the GA-based method developed in this dissertation is computationally more efficient than GA-based methods proposed in the literature. This is attributed to the fact that the specialized genetic operators designed in this study produce fewer infeasible solutions. The results of these experiments suggest the need for continued research into non-probabilistic methods to seed the initial populations, selection and replacement strategies that factor in genetic diversity on the level of the circuits protecting sensitive cells; solution-preserving crossover and mutation operators; and the use of cost benefit ratios to determine program termination.
135

Automatically Defined Templates for Improved Prediction of Non-stationary, Nonlinear Time Series in Genetic Programming

Moskowitz, David 01 January 2016 (has links)
Soft methods of artificial intelligence are often used in the prediction of non-deterministic time series that cannot be modeled using standard econometric methods. These series, such as occur in finance, often undergo changes to their underlying data generation process resulting in inaccurate approximations or requiring additional human judgment and input in the process, hindering the potential for automated solutions. Genetic programming (GP) is a class of nature-inspired algorithms that aims to evolve a population of computer programs to solve a target problem. GP has been applied to time series prediction in finance and other domains. However, most GP-based approaches to these prediction problems do not consider regime change. This paper introduces two new genetic programming modularity techniques, collectively referred to as automatically defined templates, which better enable prediction of time series involving regime change. These methods, based on earlier established GP modularity techniques, take inspiration from software design patterns and are more closely modeled after the way humans actually develop software. Specifically, a regime detection branch is incorporated into the GP paradigm. Regime specific behavior evolves in a separate program branch, implementing the template method pattern. A system was developed to test, validate, and compare the proposed approach with earlier approaches to GP modularity. Prediction experiments were performed on synthetic time series and on the S&P 500 index. The performance of the proposed approach was evaluated by comparing prediction accuracy with existing methods. One of the two techniques proposed is shown to significantly improve performance of time series prediction in series undergoing regime change. The second proposed technique did not show any improvement and performed generally worse than existing methods or the canonical approaches. The difference in relative performance was shown to be due to a decoupling of reusable modules from the evolving main program population. This observation also explains earlier results regarding the inferior performance of genetic programming techniques using a similar, decoupled approach. Applied to financial time series prediction, the proposed approach beat a buy and hold return on the S&P 500 index as well as the return achieved by other regime aware genetic programming methodologies. No approach tested beat the benchmark return when factoring in transaction costs.
136

MODELING, LEARNING AND REASONING ABOUT PREFERENCE TREES OVER COMBINATORIAL DOMAINS

Liu, Xudong 01 January 2016 (has links)
In my Ph.D. dissertation, I have studied problems arising in various aspects of preferences: preference modeling, preference learning, and preference reasoning, when preferences concern outcomes ranging over combinatorial domains. Preferences is a major research component in artificial intelligence (AI) and decision theory, and is closely related to the social choice theory considered by economists and political scientists. In my dissertation, I have exploited emerging connections between preferences in AI and social choice theory. Most of my research is on qualitative preference representations that extend and combine existing formalisms such as conditional preference nets, lexicographic preference trees, answer-set optimization programs, possibilistic logic, and conditional preference networks; on learning problems that aim at discovering qualitative preference models and predictive preference information from practical data; and on preference reasoning problems centered around qualitative preference optimization and aggregation methods. Applications of my research include recommender systems, decision support tools, multi-agent systems, and Internet trading and marketing platforms.
137

Discovering Hidden Networks Using Topic Modeling

Cooper, Wyatt 01 January 2017 (has links)
This paper explores topic modeling via unsupervised non-negative matrix factorization. This technique is used on a variety of sources in order to extract salient topics. From these topics, hidden entity networks are discovered and visualized in a graph representation. In addition, other visualization techniques such as examining the time series of a topic and examining the top words of a topic are used for evaluation and analysis. There is a large software component to this project, and so this paper will also focus on the design decisions that were made in order to make the program developed as versatile and extensible as possible.
138

Measuring Presence in a Police Use of Force Simulation

Desai, Dharmesh Rajendra 19 May 2017 (has links)
We have designed a simulation that can be used to train police officers. Digital simulations are more cost-effective than a human role play. Use of force decisions are complex and made quickly, so there is a need for better training and innovative methods. Using this simulation, we are measuring the degree of presence that a human experience in a virtual environment. More presence implies better training. Participants are divided into two groups in which one group performs the experiment using a screen, keyboard, and mouse, and another uses virtual reality controls. In this experiment, we use subjective measurements and physiological measurements. We offer a questionnaire to participants before and after play. We also record the participants change in heart rate, skin conductivity and skin temperature using Empatica device. By comparing the data collected from both groups, we prove that people experience more presence in the virtual environment.
139

Evaluation of Supervised Machine Learning for Classifying Video Traffic

Taylor, Farrell R. 01 January 2016 (has links)
Operational deployment of machine learning based classifiers in real-world networks has become an important area of research to support automated real-time quality of service decisions by Internet service providers (ISPs) and more generally, network administrators. As the Internet has evolved, multimedia applications, such as voice over Internet protocol (VoIP), gaming, and video streaming, have become commonplace. These traffic types are sensitive to network perturbations, e.g. jitter and delay. Automated quality of service (QoS) capabilities offer a degree of relief by prioritizing network traffic without human intervention; however, they rely on the integration of real-time traffic classification to identify applications. Accordingly, researchers have begun to explore various techniques to incorporate into real-world networks. One method that shows promise is the use of machine learning techniques trained on sub-flows – a small number of consecutive packets selected from different phases of the full application flow. Generally, research on machine learning classifiers was based on statistics derived from full traffic flows, which can limit their effectiveness (recall and precision) if partial data captures are encountered by the classifier. In real-world networks, partial data captures can be caused by unscheduled restarts/reboots of the classifier or data capture capabilities, network interruptions, or application errors. Research on the use of machine learning algorithms trained on sub-flows to classify VoIP and gaming traffic has shown promise, even when partial data captures are encountered. This research extends that work by applying machine learning algorithms trained on multiple sub-flows to classification of video streaming traffic. Results from this research indicate that sub-flow classifiers have much higher and more consistent recall and precision than full flow classifiers when applied to video traffic. Moreover, the application of ensemble methods, specifically Bagging and adaptive boosting (AdaBoost) further improves recall and precision for sub-flow classifiers. Findings indicate sub-flow classifiers based on AdaBoost in combination with the C4.5 algorithm exhibited the best performance with the most consistent results for classification of video streaming traffic.
140

Enabling Machine Science through Distributed Human Computing

Wagy, Mark David 01 January 2016 (has links)
Distributed human computing techniques have been shown to be effective ways of accessing the problem-solving capabilities of a large group of anonymous individuals over the World Wide Web. They have been successfully applied to such diverse domains as computer security, biology and astronomy. The success of distributed human computing in various domains suggests that it can be utilized for complex collaborative problem solving. Thus it could be used for "machine science": utilizing machines to facilitate the vetting of disparate human hypotheses for solving scientific and engineering problems. In this thesis, we show that machine science is possible through distributed human computing methods for some tasks. By enabling anonymous individuals to collaborate in a way that parallels the scientific method -- suggesting hypotheses, testing and then communicating them for vetting by other participants -- we demonstrate that a crowd can together define robot control strategies, design robot morphologies capable of fast-forward locomotion and contribute features to machine learning models for residential electric energy usage. We also introduce a new methodology for empowering a fully automated robot design system by seeding it with intuitions distilled from the crowd. Our findings suggest that increasingly large, diverse and complex collaborations that combine people and machines in the right way may enable problem solving in a wide range of fields.

Page generated in 0.1931 seconds