Spelling suggestions: "subject:"artin L functions"" "subject:"crtin L functions""
1 |
Aspects explicites des fonctions L et applications / Explicit aspects of L-functions and applicationsEuvrard, Charlotte 04 April 2016 (has links)
Cette thèse s'intéresse aux fonctions L, à leurs aspects explicites et à leurs applications Dans le premier chapitre, nous donnons une définition précise de ce que nous appelons une fonction L ainsi que leurs principales propriétés, notamment concernant les invariants appelés paramètres locaux. Ensuite, nous traitons le cas des fonctions L d'Artin. Pour celles-ci, nous avons créé un programme dans le logiciel PARI/GP donnant les coefficients et les invariants d'une fonction L d'Artin lorsque le corps de base est Q.Le deuxième chapitre explicite un théorème dû à Henryk Iwaniec et Emmanuel Kowalski permettant de différencier deux fonctions L générales en considérant leurs paramètres locaux pour tous les premiers jusqu'à une certaine borne théorique.Dans la suite, nous constaterons que distinguer la somme des paramètres locaux de fonctions L d'Artin revient à séparer les caractères associés par les automorphismes de Frobenius. Ce sera l'objet du troisième chapitre qui est à relier au théorème de Chebotarev. En appliquant notre résultat à des caractères conjugués du groupe alterné, on obtient une borne sur un nombre premier p donnant l'écriture de la factorisation modulo p d'un polynôme répondant à certains critères. Ce travail est à comparer avec un résultat de Joël Bellaïche (2013). Nous illustrons enfin numériquement nos résultats en étudiant l'évolution de la borne sur des polynômes de la forme X^n+uX+v avec n=5, 7 et 13. / This thesis focuses on L-functions, their explicit aspects and their applications.In the first chapter, we give a precise definition of L-functions and their main properties, especially about the invariants called local parameters. Then, we deal with Artin L-functions. For them, we have created a computer program in PARI/GP which gives the coefficients and the invariants for an Artin L-function above Q.In the second chapter, we make explicit a theorem of Henryk Iwaniec and Emmanuel Kowalski, which distinguishes between two L-functions by considering their local parameters for primes up to a theoretical bound.Actually, distinguishing between sums of local parameters of Artin L-functions is the same as separating the associated characters by the Frobenius automorphism. This is the subject of the third chapter, that can be related to Chebotarev Theorem. By applying the result to conjugate characters of the alternating group, we get a bound for a prime p giving the factorization modulo $p$ of a certain polynomial. This work has to be compared with a result from Joël Bellaïche (2013).Finally, we numerically illustrate our results by studying the evolution of the bound on polynomials X^n+uX+v, for n=5, 7 and 13.
|
2 |
Conjecture de brumer-stark non abélienne / A non-abelian brumer-Stark conjectureDejou, Gaëlle 24 June 2011 (has links)
La recherche d’annulateurs du groupe des classes d’idéaux d’une extension abélienne de Q est un sujet classique et remonte à des travaux de Kummer et Stickelberger. La conjecture de Brumer-Stark porte sur les extensions abéliennes de corps de nombres et prédit qu’un élément de l’anneau de groupe du groupe de Galois, appelé élément de Brumer-Stickelberger, est un annulateur du groupe des classes de l’extension. De plus, elle stipule que les générateurs des idéaux principaux obtenus possèdent des propriétés bien particulières. Cette thèse est dédiée à la généralisation de cette conjecture aux extensions de corps de nombres galoisiennes mais non abéliennes. Dans un premier temps, nous nous focalisons sur l’étude de l’analogue non abélien de l’élément de Brumer, nécessaire à l’établissement d’une conjecture non abélienne. La seconde partie est consacrée à l’énoncé de la conjecture de Brumer-Stark non abélienne et à ses reformulations, ainsi qu’aux propriétés qu’elle vérifie. Nous nous intéressons notamment aux propriétés de changement d’extension. Nous étudions ensuite le cas spécifique des extensions dont le groupe de Galois possède un sous-groupe abélien H distingué d’indice premier. Sous la validité de la conjecture de Brumer-Stark associée à certaines extensions abéliennes, nous en déduisons deux résultats suivant la parité du cardinal de H : dans le cas impair, nous démontrons la conjecture de Brumer-Stark non abélienne, et dans le cas pair, nous établissons un résultat d’abélianité permettant d’obtenir, sous des hypothèses supplémentaires, la conjecture non abélienne. Enfin nous effectuons des vérifications numériques de la conjecture non abélienne permettant de démontrer cette conjecture dans les exemples testés. / Finding annihilators of the ideal class group of an abelian extension of Q is a classical subject which goes back to work of Kummer and Stickelberger. The Brumer-Stark conjecture deals with abelian extensions of number fields and predicts that a group ring element, called the Brumer-Stickelberger element, annihilates the ideal class group of the extension under consideration. Moreover it specifies that the generators thus obtained have special properties. The aim of this work is to generalize this conjecture to non-abelian Galois extensions. We first focus on the study of a non-abelian analogue of the Brumer element, necessary to establish a non-abelian generalization of the conjecture. The second part is devoted to the statement of our non-abelian conjecture, and the properties it satisfies. We are particularly interested in extension change properties. We then study the specific case of extensions whose Galois group has an abelian normal subgroup H of prime index. If the Brumer-Stark conjecture associated to certain abelian subextensions holds, we prove two results according to the parity of the cardinal of H : in the odd case, we get the non-abelian Brumer-Stark conjecture, and in the even case, we establish an abelianity result implying under additional hypotheses the proof of the non-abelian conjecture. Thanks to PARI-GP, we finally do some numerical verifications of the nonabelian conjecture, proving its validity in the tested examples.
|
Page generated in 0.0937 seconds