• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Food for thought : genetic, historical and ethnobotanical studies of taro Colocasia esculenta (L.) Schott in Africa

Grimaldi, Ilaria Maria January 2014 (has links)
The presence of exotic plants both in Africa and in Asia has long attracted the attention of scholars who have attempted to understand the human activities linked to them. Archaeological and ethnographic evidence for the reconstruction of these activities is often very limited, but indirect methods such as the study of DNA have become useful tools in building models of early human dispersal. Among the plants that were carried across the Indian Ocean, sometimes known as the “tropical food kit”, the staple crop taro (Colocasia esculenta (L.) Schott) has continued to be the subject of ongoing research. The use of this crop in antiquity is well documented by discoveries of ancient taro starch granules found on archaeological artefacts from sites in Southeast Asia and the Pacific islands, making it one of the oldest plants consumed by people. However, less is known about the use of taro in Africa and the Mediterranean region, where it is found both in the wild and under cultivation - often representing a staple crop in Sub-Saharan Africa. In this doctoral thesis, genetic analysis was performed on modern samples of taro collected from Africa and other regions of the Indian Ocean, using four molecular markers. Two main clusters have been identified, and within this main sub-division four populations of taro have been detected in Africa. By integrating the genetic results with historical and linguistic research, and extensive ethnobotanical fieldwork in Africa, two of these populations are proposed to represent early translocations, with modern distribution patterns suggesting diverse dispersal routes at different times. These results open up a new scenario in which the “tropical food kit” is finally unpacked, with important historical implications for each of the crops contained within it.
2

Morphology and diversity of arbuscular mycorrhizal fungi colonizing roots of dandelion and chive

Li, Yang 22 January 2008
Arbuscular mycorrhizas (AM) are the plant root-fungus interactions that are most widespread mycorrhiza in nature. As classically defined, there are two major AM morphologies named after the plant genera in which they were first described: Arum- (intercellular hyphae with arbuscules mainly in inner root cortex), Paris- (extensive hyphal coils in outer root cortex), as well as intermediate morphotypes. In this study, dandelions and chives harvested in Saskatoon (SK, Canada) were examined for AM colonization and morphological types. A Multiple Quantitation Method (MQM) was used for assessing fungal colonization intensity using magnified epifluorescence images of lactofuchsin stained roots, plus details analyzed by high-resolution confocal fluorescence imaging. The results showed that host plants harbored diverse endorhizal fungi, including arbuscular mycorrhizal fungi (AMF), septate endophytes (SE) and fine endophytes (FE), with varying abundances. The soil properties were assessed with respect to P status, organic matter and pH, but there was no correlation with the fungal abundance in this study. Both dandelion and chive roots had Arum- and Paris-type AM. In order to assess the applicability of a current model, I studied quantitative relationship between the cell packing pattern and AM morphotype. Cross sections of host roots were analyzed with Image J software to calculate the proportion of air spaces. The abundance of arbuscules (Arum-type) and hyphal coils (Paris-type) were significantly different in chive and dandelion roots. However, there was no difference in the proportion of air spaces in the inner or outer cortex. Therefore, host root cell packing does not appear to influence AM morphotype at least in the samples in this study. AM fungal diversity was preliminarily investigated by nested PCR with group specific primers, showing multiple PCR bands within root samples, and indicating the potential complexity of AMF groups. Further work to sequence the PCR products is needed to elucidate the AMF groups present.
3

Morphology and diversity of arbuscular mycorrhizal fungi colonizing roots of dandelion and chive

Li, Yang 22 January 2008 (has links)
Arbuscular mycorrhizas (AM) are the plant root-fungus interactions that are most widespread mycorrhiza in nature. As classically defined, there are two major AM morphologies named after the plant genera in which they were first described: Arum- (intercellular hyphae with arbuscules mainly in inner root cortex), Paris- (extensive hyphal coils in outer root cortex), as well as intermediate morphotypes. In this study, dandelions and chives harvested in Saskatoon (SK, Canada) were examined for AM colonization and morphological types. A Multiple Quantitation Method (MQM) was used for assessing fungal colonization intensity using magnified epifluorescence images of lactofuchsin stained roots, plus details analyzed by high-resolution confocal fluorescence imaging. The results showed that host plants harbored diverse endorhizal fungi, including arbuscular mycorrhizal fungi (AMF), septate endophytes (SE) and fine endophytes (FE), with varying abundances. The soil properties were assessed with respect to P status, organic matter and pH, but there was no correlation with the fungal abundance in this study. Both dandelion and chive roots had Arum- and Paris-type AM. In order to assess the applicability of a current model, I studied quantitative relationship between the cell packing pattern and AM morphotype. Cross sections of host roots were analyzed with Image J software to calculate the proportion of air spaces. The abundance of arbuscules (Arum-type) and hyphal coils (Paris-type) were significantly different in chive and dandelion roots. However, there was no difference in the proportion of air spaces in the inner or outer cortex. Therefore, host root cell packing does not appear to influence AM morphotype at least in the samples in this study. AM fungal diversity was preliminarily investigated by nested PCR with group specific primers, showing multiple PCR bands within root samples, and indicating the potential complexity of AMF groups. Further work to sequence the PCR products is needed to elucidate the AMF groups present.

Page generated in 0.0248 seconds