• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Comparison of Antlions, Bees, Darkling Beetles and Velvet Ants Across Sand Dune and Non-Sand Dune Habitats at Ash Meadows National Wildlife Refuge

Boehme, Nicole F. 01 May 2014 (has links)
Insects fulfill important roles within all ecosystems, including deserts, and interact directly and indirectly with the endemic and endangered species at the Ash Meadows National Wildlife Refuge (AMNWR). Here I investigate the variability of species richness, diversity, abundance and community composition of four insect groups between stabilized sand dune habitats, unstabilized sand dune habitats and non-sand dune habitats. The insects examined in this thesis include antlions (Myrmeleontidae), bees (Apiformes), darkling beetles (Tenebrionidae) and velvet ants (Mutillidae). As the impact and interactions of two of the insect groups, antlions and velvet ants, are largely unknown within any ecosystem, this thesis also includes a faunal study of velvet ants at AMNWR and their spatial and temporal variation at the refuge. Generalized linear mixed models were used to identify significant differences in richness, diversity and abundance for each insect group between the stabilized sand dune, unstabilized sand dune and non-sand dune habitats. Species richness differed between habitats for antlions, beetles and velvet ants over the study period. Diversity differed between habitats for antlions and beetles, and abundance differed between habitats for all groups over the study period. Nearly every habitat supported some unique species. The faunal survey of velvet ants revealed minor variation in flight times between species and a unique pattern of temporal niche partitioning in one species. Habitat preferences were observed for seven of 42 velvet ant species at AMNWR. In a comparison of the diversity of velvet ants between AMNWR and the Nevada Test Site (NTS), six velvet ant species that occurred at the NTS were not found at AMNWR. Diagnoses and a key are provided for the velvet ants of AMNWR. This thesis increases the number of known terrestrial invertebrates at the refuge and provides a comparison of terrestrial insect distribution and habitat use at AMNWR. These investigations contribute to the goals and objectives of the U. S. Fish and Wildlife Service to obtain basic inventories and understand the terrestrial habitat use of invertebrates at AMNWR.
2

Contribution of Recharge Along Regional Flow Paths to Discharge at Ash Meadows, Nevada

Bushman, Michelle 28 April 2008 (has links) (PDF)
Springs in the Ash Meadows, Nevada wetland area are discharging groundwater at a high volume that cannot be sustained by local, present-day precipitation and associated recharge. Previous groundwater flow models for this region have required groundwater to flow through complex geology for long distances (160km) through fractures that, in the current stress field, should be closed in many instances in the presumed flow direction. This thesis examines several possible flow paths and evaluates each flow path using chemical and isotopic signatures in the water, as well as geologic and geophysical constraints, and determines that flow from beneath the Yucca Mountain area is the most viable source of groundwater for the springs at Ash Meadows. Isotopic signatures also indicate that recharge likely occurred during the last pluvial, a cooler, wetter period about 13,000 or more years ago, and that present-day water is discharging from storage. Geophysical investigations show the relationship of a deep-seated crustal feature (the Gravity Fault) with shallow offset faults near the Ash Meadows springs. The damage zone of the Gravity Fault appears to provide a conduit for groundwater flow; the north-south fractures should have the greatest aperture under the current stress field, and the buried tufa mounds (revealed with ground penetrating radar data) indicate localized upwelling from a deeper regional water source.

Page generated in 0.0533 seconds