• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation of the copper–chlorine thermochemical cycle / Mapamba, L.S.

Mapamba, Liberty Sheunesu January 2011 (has links)
The global fossil reserves are dwindling and there is need to find alternative sources of energy. With global warming in mind, some of the most commonly considered suitable alternatives include solar, wind, nuclear, geothermal and hydro energy. A common challenge with use of most alternative energy sources is ensuring continuity of supply, which necessitates the use of energy storage. Hydrogen has properties that make it attractive as an energy carrier. To efficiently store energy from alternative sources in hydrogen, several methods of hydrogen production are under study. Several literature sources show thermochemical cycles as having high potential but requiring further development. Using literature sources, an initial screening of thermochemical cycles was done to select a candidate thermochemical cycle. The copper–chlorine thermochemical cycle was selected due to its relatively low peak operating temperature, which makes it flexible enough to be connected to different energy sources. Once the copper–chlorine cycle was identified, the three main copper–chlorine cycles were simulated in Aspen Plus to examine which is the best configuration. Using experimental data from literature and calculating optimal conditions, flowsheets were developed and simulated in Aspen Plus. The simulation results were then used to determine the configuration with the most favourable energy requirements, cycle efficiency, capital requirements and product cost. Simulation results show that the overall energy requirements increase as the number of steps decrease from five–steps to three–steps. Efficiencies calculated from simulation results show that the four and five–step cycles perform closely with 39% and 42%, respectively. The three–step cycle has a much lower efficiency, even though the theoretical calculations imply that the efficiency should also be close to that of the four and five–step cycles. The five–step reaction cycle has the highest capital requirements at US$370 million due to more equipment and the three–step cycle has the lowest requirement at US$ 275 million. Payback analysis and net present value analysis indicate that the hydrogen costs are highest for the three–step cycle at between US$3.53 per kg for a 5–10yr payback analysis and the five–step cycle US$2.98 per kg for the same payback period. / Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2012.
2

Simulation of the copper–chlorine thermochemical cycle / Mapamba, L.S.

Mapamba, Liberty Sheunesu January 2011 (has links)
The global fossil reserves are dwindling and there is need to find alternative sources of energy. With global warming in mind, some of the most commonly considered suitable alternatives include solar, wind, nuclear, geothermal and hydro energy. A common challenge with use of most alternative energy sources is ensuring continuity of supply, which necessitates the use of energy storage. Hydrogen has properties that make it attractive as an energy carrier. To efficiently store energy from alternative sources in hydrogen, several methods of hydrogen production are under study. Several literature sources show thermochemical cycles as having high potential but requiring further development. Using literature sources, an initial screening of thermochemical cycles was done to select a candidate thermochemical cycle. The copper–chlorine thermochemical cycle was selected due to its relatively low peak operating temperature, which makes it flexible enough to be connected to different energy sources. Once the copper–chlorine cycle was identified, the three main copper–chlorine cycles were simulated in Aspen Plus to examine which is the best configuration. Using experimental data from literature and calculating optimal conditions, flowsheets were developed and simulated in Aspen Plus. The simulation results were then used to determine the configuration with the most favourable energy requirements, cycle efficiency, capital requirements and product cost. Simulation results show that the overall energy requirements increase as the number of steps decrease from five–steps to three–steps. Efficiencies calculated from simulation results show that the four and five–step cycles perform closely with 39% and 42%, respectively. The three–step cycle has a much lower efficiency, even though the theoretical calculations imply that the efficiency should also be close to that of the four and five–step cycles. The five–step reaction cycle has the highest capital requirements at US$370 million due to more equipment and the three–step cycle has the lowest requirement at US$ 275 million. Payback analysis and net present value analysis indicate that the hydrogen costs are highest for the three–step cycle at between US$3.53 per kg for a 5–10yr payback analysis and the five–step cycle US$2.98 per kg for the same payback period. / Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2012.
3

Experimental and modelling studies of coal/biomass oxy-fuel combustion in a pilot-scale PF combustor

Jurado Pontes, Nelia January 2014 (has links)
This thesis focuses on enhancing knowledge on co-firing oxy-combustion cycles to boost development of this valuable technology towards the aim of it becoming an integral part of the energy mix. For this goal, the present work has addressed the engineering issues with regards to operating a retrofitted multi-fuel combustor pilot plant, as well as the development of a rate-based simulation model designed using Aspen Plus®. This model can estimate the gas composition and adiabatic flame temperatures achieved in the oxy-combustion process using coal, biomass, and coal-biomass blends. The fuels used for this study have been Daw Mill coal, El Cerrejon coal and cereal co-product. A parametric study has been performed using the pilot-scale 100kWth oxy-combustor at Cranfield University and varying the percentage of recycle flue gas, the type of recycle flue gas (wet or dry), and the excess oxygen supplied to the burner under oxy-firing conditions. Experimental trials using co-firing with air were carried out as well in order to establish the reference cases. From these tests, experimental data on gas composition (including SO3 measurement), temperatures along the rig, heat flux in the radiative zone, ash deposits characterisation (using ESEM/EDX and XRD techniques), carbon in fly ash, and acid dew point in the recycle path (using an electrochemical noise probe), were obtained. It was clearly shown during the three experimental campaigns carried out, that a critical parameter was that of minimising the air ingress into the process as it was shown to change markedly the chemistry inside the oxy-combustor. Finally, part of the experimental data collected (related to gas composition and temperatures) has been used to validate the kinetic simulation model developed in Aspen Plus®. For this validation, a parametric study considering the factor that most affect the oxy-combustion process (the above mentioned excess amount of air ingress) was varied. The model was found to be in a very good agreement with the empirical results regarding the gas composition.
4

Analysis of Parabolic Trough Solar Energy Integration into Different Geothermal Power Generation Concepts

Vahland, Sören January 2013 (has links)
The change in climate as a consequence of anthropogenic activities is a subject ofmajor concerns. In order to reduce the amount of greenhouse gas emissions inthe atmosphere, the utilization of renewable, fossil-free power generationapplications becomes inevitable. Geothermal and solar energy play a major rolein covering the increased demand for renewable energy sources of today’s andfuture’s society. A special focus hereby lies on the Concentrating Solar Powertechnologies and different geothermal concepts. The costs for producingelectricity through Concentrating Solar Power and therefore Parabolic Trough Collectorsas well as geothermal conversion technologies are still comparatively high. Inorder to minimize these expenses and maximize the cycle’s efficiency, thepossible synergies of a hybridization of these two technologies becomeapparent. This thesis therefore investigates the thermodynamic and economicbenefits and drawbacks of this combination from a global perspective. For that,a Parabolic Trough Collector system is combined with the geothermal conversionconcepts of Direct Steam, Single and Double Flash, Organic Rankine as well asKalina Cycles. The solar integrations under investigation are Superheat,Preheat and Superheat & Reheat of the geothermal fluid. The thermodynamicanalysis focuses on the thermal and utilization efficiencies, as well as therequired Parabolic Trough Collector area. The results indicate that in the caseof the Superheat and Superheat & Reheat setup, the thermal efficiency canbe improved for all geothermal concepts in comparison to their correspondinggeothermal stand-alone case. The Preheat cases, with the major contributionfrom solar energy, are not able to improve the cycle’s thermal efficiencyrelative to the reference setup. From an exergy perspective the findings varysignificantly depending on the applied boundary conditions. Still, almost allcases were able to improve the cycle’s performance compared to the referencecase. For the economic evaluation, the capital investment costs and thelevelized costs of electricity are studied. The capital costs increasesignificantly when adding solar energy to the geothermal cycle. The levelizedelectricity costs could not be lowered for any hybridization case compared tothe reference only-geothermal configurations. The prices vary between20.04 €/MWh and 373.42 €/MWh. When conducting a sensitivity analysison the solar system price and the annual mean irradiance, the Kalina Superheatand Superheat & Reheat, as well as the Organic Rankine Preheathybridizations become cost competitive relative to the reference cases.Concluding, it is important to remark, that even if the hybridization of the ParabolicTrough and the different geothermal concepts makes sense from a thermodynamicperspective, the decisive levelized costs of electricity could not be improved.It is, however, possible that these costs can be further reduced under speciallocal conditions, making the addition of Parabolic Trough solar heat tospecific geothermal concepts favorable.

Page generated in 0.1256 seconds