• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 10
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Evaluation of water damage on asphalt concrete mixtures using the environmental conditioning system

Al-Joaib, Ali Abdulla 28 May 1993 (has links)
Asphalt concrete pavement is subjected to several damaging actions from traffic loads, water (from precipitation and/or groundwater sources), and temperature. The durability of the asphalt-aggregate mixture, its ability to withstand these damaging actions for long periods, is a very important engineering property. While the durability of the asphalt-aggregates mixture depends on several factors such as the mixture's properties, construction methods, traffic loads and environmental conditions, they have to be evaluated to predict their field performance. Based on mixture evaluations, the mixtures that fail the test would have to be modified by additives or by changing the materials. The first objective of this thesis was to evaluate asphalt-aggregate mixtures for water damage using the Environmental Conditioning System (ECS), and rank the asphalt and aggregate types based on water sensitivity. The second objective was to relate the ECS ranking of the asphalt and aggregate types to Oregon State University (OSU) and University of Nottingham, UK (SWK/UN) wheel tracking test results, and to Net Adsorption Test (NAT) results. The third objective was to evaluate open-graded mixtures and rubber modified mixtures for water sensitivity using the ECS. The ECS test results indicate that performance ranking of mixtures by asphalt type or aggregate type alone cannot be made for the ECS test results due to the significant interaction between asphalt and aggregate. Water sensitivity in the ECS is significant for combinations of asphalt and aggregate. The ECS test results have shown that ECS performance ranking after one cycle is not statistically significant and does not correlate with ranking after three cycles. The results show that the ECS test program has similar aggregate rankings to those of the NAT and SWK/UN test program, while good agreement exists between SWK/UN wheel tracking results and the NAT test program results. However, poor agreement exists between the OSU wheel tracking results and those of the other two tests. Poor or very little agreement exists among the wheel tracking test results, ECS, and NAT test results in terms of asphalt type rankings. When considering the comparisons of materials ranking by different test procedures, one must keep in mind that the mechanisms leading to varying "performance" are not the same. The testing reported herein was aimed at measuring water sensitivity, but all the tests do not do so directly. The NAT procedure addresses only the potential for stripping (adhesion) and is not capable of evaluating cohesion loss. The other tests (ECS, OSU and SWK/UN wheel tracking) included all the mechanisms simultaneously, and these provided a gross effect without clearly separating the cause of failure in each case. Open-graded mixtures used by Oregon Department of Transportation (ODOT) performed well in the ECS in terms of water sensitivity. In the ECS evaluation, six mixtures passed the criteria of 75 % established for Indirect Retained Strength (IRS) test by ODOT, and one mixture was marginal. However, only one mixture passed the IRS evaluation, and another mixture was marginal. This confirms that the IRS test is a very severe test and is not suitable for water sensitivity evaluation of open-graded mixtures. Finally, the IRS test evaluation would suggest that these mixtures would fail prematurely after construction, but all of these mixtures have been used in projects which have been in service for more than three years with no visible signs of distress, or failures. / Graduation date: 1994
12

DUNE SAND-AGGREGATE MIXES AND DUNE SAND-SULFUR MIXES FOR ASPHALTIC CONCRETE PAVEMENTS

Fatani, Mohamed Noor Yaseen, 1944- January 1980 (has links)
No description available.
13

Evolution of macro texture in asphalt pavement wearing course at an early age

Tshephe, Otto Raikane. January 2013 (has links)
M. Tech. Civil Engineering. / Aims to assess the influence of the type of binder on the evolution of the macro texture in asphalt at an early age. The objective are to : 1. To assess the approach and methodology of French asphalt design method. 2. To establish the contributors to the reduction of skid resistance of asphalt. 3. Identify effective methods and develop guidelines for improving the surface drainage of asphalt with the use of tests from the laboratory. Asphaltic materials and factors under investigation include: pervious asphalt, continuously grade asphalt and various asphalt surface characteristics and correlation with the Tri-dim laser.
14

Evaluating permanent deformation in asphalt concrete using Georgia loaded wheel tester

Shami, Haroon I. 05 1900 (has links)
No description available.
15

A Coupled Viscoelastic and Damage Approach for Solids with Applications to Ice and Asphalt

Londono Lozano, Juan Guillermo January 2017 (has links)
As new materials are developed and further concerns on green alternatives and serviceability arise, understanding material behavior during the entire span of their lifetime becomes crucial to engineering applications. Moreover, many problems display a significant dependence to time and loading effects which, by varying across multiple time scales, require material models that incorporate these effects into any valid characterization and prediction. This dissertation aims at proposing a new approach to analyze and predict viscoelastic materials that deteriorate during multiple loading conditions. The model is constructed from mechanical and mathematical basis while satisfying physical laws. In this work, the proposed constitutive law is used for the analysis of the mechanical properties of ice. The mechanical behavior, biaxial envelop and multiple loading types demonstrate the validity of the model when compared to experimental results and other ice models available in the literature. A rigorous calibration scheme for the viscoelastic and damage parameters is also presented. Moreover, as material deterioration or damage is modeled in standard Finite Elements software, it is commonly known that computational results can be dependent on the spatial discretization or mesh. That is, damage zone and energy dissipation are dependent on the selection of the mesh yielding a disappearing damage zone and energy dissipation upon refinement. This non-physical behavior is corrected by the novel regularization approach proposed in this document, which introduces a length scale of the material and produces results that are no longer sensitive to the mesh selection. The nonlocal damage model is finally used in the analysis of asphalt concrete viscoelastic behavior and cracking prediction. As presented in the ice case, a rigorous calibration approach is presented first followed by the validation to experimental data available in the literature under different loading conditions. The coupled viscoelastic and damage model is compared to other model and their Finite Elements implementations are highlighted in terms of computational efficiency. A nonlinear coupled system for solving this problem is programmed as a User Element in a commercial Finite Element analysis software.
16

Defect characterization in heterogeneous civil materials using ultrasound

In, Chi-Won 17 January 2013 (has links)
Asphalt and Portland cement concrete constitutes a significant portion of the total infrastructure all over the world. It has been reported that much of this concrete infrastructure is now approaching or has already passed its original design life. Thus it is critical to be able to quantitatively assess the condition of these concrete components. In order to rehabilitate or repair the civil infrastructure, nondestructive evaluation (NDE) techniques have been of great interest for infrastructure management agencies. However concrete components present several specific NDE challenges that must be addressed. . Concrete naturally exhibits large scale heterogeneous microstructure with a great deal of local material property variability, For this reasons, many conventional NDE techniques that work well for steel and other homogeneous materials cannot be applied to concrete; concrete is unable to transmit high frequencies, as the heterogeneity of the concrete causes signals of smaller wavelengths or wavelengths equal to the nominal aggregate size to be scattered and severely attenuated. Nevertheless, progress has been made towards accurate and reliable in-place NDE of concrete structures and materials, for example impact echo, ultrasonic pulse velocity method, and the ultrasonic wave transmission method. However, the detection of smaller sized defects or remote defects that are located away from the testing location still pose problems. In addition, the large size and potential limited access conditions of civil structures raise additional challenges. To overcome the limitations of current NDE techniques for concrete, this research considers two different types of ultrasonic waves (coherent and incoherent wave) to quantitatively characterize and monitor defects in heterogeneous concrete materials. The global objective of this research is to determine the feasibility and applicability of using these ultrasonic waves as a global, rapid, reliable, and non-biased technique for the routine screening of defects or monitoring of concrete structures and materials. Three different problems are considered: 1) characterization of segregation in asphaltic concrete, 2) crack depth determination in pier cap of concrete bridge structure, and 3) monitoring of self-healing process in cement-based concrete.
17

Evaluation of laboratory test used to assess rut potential in the hot mix asphalt and the effects of compaction methods

Kekana, Sello Levy. January 2014 (has links)
M. Tech. Civil Engineering. / Evaluates various laboratory test methods to assess rutting potential in the hot-mix asphalt (HMA) and the effects of compaction methods. To achieve this objective, rutting potential of HMA samples prepared and compacted in the laboratory, and in the field was evaluated using different laboratory test methods under a range of temperatures and loads.
18

Evaluation of adhesion properties in bitumen-aggregate systems for winter surfacing seals using the bitumen bond strength test

Twagirimana, Emmanuel 12 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Flexible pavement designers have a choice of two wearing course: either asphalt concrete or surfacing seals. The latter have been widely used by several countries as their preferred wearing course over other methods, especially countries with a limited number of average inhabitants per square kilometre. Moreover, the surfacing seals were identified as an efficient cost effective road preventive maintenance technique. Surfacing seals in New Zealand, South Africa and Australia cover about 65%, 80% and 90% of their surfaced road networks respectively. The preference of surfacing seals is due to their competitive initial cost and ease of construction. In South Africa, the life expectancy of surfacing seals varies between 8 and 12 years with an average of 10 years. This has not been the case in a number of surfacing seals constructed in winter, especially when the night recorded temperature is below 10oC. The dominant failure mechanism is ravelling (chip loss) soon after construction due to traffic loading. This chip loss is linked to the poor adhesion bond development rate in the bitumen-aggregate system during winter adverse conditions. In order to address the issue of premature chip loss the need for the development of a robust adhesion test method was identified. For that purpose, recently, researchers in the bitumen industry developed the Bitumen Bond Strength test method. This method was used in this study. This study intends to contribute to the understanding of binder-aggregate adhesion bond development for winter surfacing seals using the BBS test. Binder type, precoat type and conditioning, aggregate type and curing time are amongst the factors influencing winter seals adhesion bond performance. An experimental matrix involving three types of binder, two types of aggregate, four different precoating fluids, two precoat conditionings and two binder-curing times were then developed and investigated. Winter weather parameters affecting adhesion properties were also taken into consideration during the course of the investigation. Throughout the test, the procedure described in AASHTO TP 91-11 was followed. However, in order to enhance the control of the binder application temperature, a new method for hot applied binder sample preparation was developed as part of this study. The findings show that there is a significant difference between adhesion properties of the hot applied binders (70/100 and S-E1) and the emulsion (SC-E1). In most of the cases, the hot applied binders performed better than the emulsion. The failure mode observed was found to be linked to the condition of the precoating. The influence of the precoat type and conditioning, and effect of binder curing time were significantly highlighted. The use of a dry precoat benefited the adhesion bond strength up to around 50% relatively to the corresponding non-precoated combination. However, a decrement in the bond strength due to precoating of up to 28.7% was also observed. A statistical analysis using ANOVA did not illustrate any statistical significant effect of the aggregate type. The interaction effects analysis using ANOVA revealed the aggregate type interacting with precoat type to be the most influential interaction at level two. The precoat conditioning implication to the adhesion development rate, which influences the time for opening to traffic after construction, was illustrated. Insightful aspects on the compatibility between the binder type and precoat type and conditioning during the aggregate precoating practices and on the time for opening to traffic are highlighted. Finally, the repeatability analysis proved the BBS test to be a repeatable testing method with caution. Recommendations for further studies that could support the conclusions drawn in this study were provided. / AFRIKAANSE OPSOMMING: Buigbare plaveiselontwerpers het 'n keuse van twee deklae: óf Asfalt of oppervlak seëls. Laasgenoemde word algemeen gebruik deur verskeie lande as hul voorkeur deklaag, veral die lande met beperkte aantal gemiddelde inwoners per vierkante kilometer. Verder, is die seëls geïdentifiseer as 'n doeltreffende koste-effektiewe deklaag tegniek. Oppervlakseëls in Nieu-Seeland, Suid-Afrika en Australië dek ongeveer 65%, 80% en 90% van hul padnetwerke onderskeidelik. Die seëls se voorkeur is te danke aan hul mededingende aanvanklike koste en eenvoudige vorm van die konstruksie. In Suid-Afrika wissel die seël se lewensverwagting tussen 8 en 12 jaar met 'n gemiddeld van 10 jaar. Dit is egter nie die geval van 'n aantal seëls wat in die winter gebou word nie, veral wanneer die aangetekende nagtemperatuur onder 10o C daal nie. Die dominante swigtingsmeganisme is stroping (klipverlies) kort na konstruksie. Hierdie klipverlies is gekoppel aan die power kleef-ontwikkeling van bitumen gedurende die winter. Ten einde die probleem van voortydige klipverlies aan te spreek het die behoefte vir die ontwikkeling van 'n robuuste toetsmetode ontstaan. Om hierdie rede het navorsers onlangs in die bitumenbedryf die “BBS toetsmetode” ontwikkel en is dié toetsmetode in hierdie studie gebruik. Hierdie studie beoog om by te dra tot die begrip van bindmiddel-klip kleefontwikkeling vir die winter seëls dmv die BBS toets. Die faktore, insluitend maar nie beperk tot bindmiddeltipe, voorafdekking (“PRECOAT”) -tipe en kondisionering, aggregaattipe en kuurtyd beïnvloed winter seëls se kleefeienskappe. 'n Eksperimentele matriks met drie tipes bindmiddels, twee tipes aggregate, vier verskillende voorafdekking-vloeistowwe, twee voorafdekking kondisionering en twee bindmiddel kuurtye is toe ontwikkel en ondersoek. Winter weer parameters wat kleefeienskappe beïnvloed is ook in ag geneem tydens die verloop van die ondersoek. Regdeur die studie is die prosedure AASHTO TP 91-11 gevolg, maar ten einde die beheer van die bindmiddel spuittemperatuur te verbeter, is ‘n nuwe metode vir warmspuit-bindmonsters voorbereiding ontwikkel as deel van hierdie studie. Die bevindinge toon dat daar 'n beduidende verskil tussen die kleefeienskappe van die warm aangewende bindmiddels (70/100 en S-E1) en die emulsie (SC-E1) is. In die meeste van die gevalle het die warmspuit-bindmiddels beter as emulsie gevaar. Daar is gevind dat die swigtingsmeganisme verbind word met die toestand van die voorafdekking. Die invloed van voorafdekkingtipe, kondisionering, en die effek van bindmiddelkuurtyd is duidelik uitgelig. Die gebruik van droë voorafdekking het die kleefkrag tot sowat 50% verhoog relatief tot die ooreenstemmende onbedekte klipkombinasie. Daar is egter ook ‘n verlaging van die kleefkrag weens voorafdekking gevind van tot so hoog soos 28,7 persent. Die statistiese ontleding met behulp van ANOVA het geen statisties beduidende effek van die verksillende aggregaattipe te vore gebring nie. Die interaksie-effek analise, met behulp van ANOVA, het wel die interaksie met voorafdekkingtipe met aggregaat die mees invloedryke bevestig. Die voorafdekking kondisioneering het ver rykende kleefkrag implikasies bloot gelê, wat die tyd vir die opening van die verkeer na konstruksie beïnvloed. Insigwekkende aspekte oor die versoenbaarheid tussen die bindmiddeltipe, voorafdekkingtipe, kondisionering, voorafdekkingpraktyk en tyd tot opening vir verkeer word uitgelig. Ten slotte, die herhaalbaarheidsanalise het die BBS toets as 'n herhaalbare toetsmetode met omsigtigheid bewys. Daar is aanbevelings tot verdere studies, wat uit die gevolgtrekking gekom het, gemaak.

Page generated in 0.0873 seconds