Spelling suggestions: "subject:"assemblages boys"" "subject:"assemblages bons""
1 |
Modélisation du comportement mécanique d'assemblages bois avec prise en compte de critères de ruptureXu, Bohan 09 October 2009 (has links) (PDF)
Les liaisons par broches ou boulons, largement utilisées dans les structures en bois, sont conçues pour transmettre des efforts de cisaillement et des moments de flexion entre les éléments assemblés tels que les poteaux et les poutres dans les portiques traditionnels. Pour ce type de liaison, les assemblages bois-bois sont souvent utilisés avec ou sans renforcement par plaques collées ou contre-plaqué ou autres matériaux. Pour répondre à certaines exigences architecturales, de résistance mécanique et de tenue au feu, les assemblages bois-bois sont souvent remplacés par des assemblages mixtes bois-métal où la plaque métallique est protégée par des éléments en bois. Des essais sont réalisés sur des assemblages bois-métal à organes multiples sollicités en traction parallèle et perpendiculaire aux fibres et en flexion pour disposer de résultats expérimentaux de référence. En se basant sur ces résultats, un modèle éléments finis 3D est développé en utilisant les hypothèses suivantes : une loi matérielle élasto-plastique non linéaire pour l'acier, des lois de contact et de frottement entre les broches métalliques et le bois et une loi élastique parfaitement plastique pour le bois sur la base du critère de Hill associé ou non au critère de Hoffman qui représente la rupture du bois. Pour la modélisation du matériau bois, qui est la partie la plus délicate, différentes approches sont utilisées dans la littérature. Il s'agit de modèles souvent basés sur des critères de plasticité anisotrope comme celui de Hill. Cependant, ce critère ne prend pas en compte la dissymétrie du comportement du bois entre traction et compression et ne tient pas compte du caractère fragile du matériau en traction perpendiculaire au fil de cisaillement. Pour combler ces insuffisances, le critère de Hill est associé au critère de Hoffman qui représente l'évolution du dommage dans le matériau bois par une réduction du modèle d'élasticité. Ce critère est particulièrement adapté au comportement mécanique fragile de la traction perpendiculaire au fil du bois. Ainsi, le critère de Hill gère la plasticité bien acceptée pour les sollicitations du bois en compression et le critère de Hoffman est utilisé pour représenter le comportement fragile du bois en traction perpendiculaire et en cisaillement. La confrontation des résultats numériques et expérimentaux montre que le modèle numérique proposé représente de façon satisfaisante le comportement d'assemblages bois sous différents types de sollicitations. Le modèle ainsi validé est utilisé pour mener des études paramétriques sur des configurations d'assemblages plus variées que celles des essais expérimentaux. Sur la base des résultats du modèle, des expressions analytiques portant sur la prédiction du comportement des assemblages sont proposées ou vérifiées.
|
2 |
Approche expérimentale et modélisation du comportement au feu d'assemblages bois sous différents types de solliciationsAudebert, Maxime 10 December 2010 (has links)
La connaissance du comportement au feu des structures est primordiale pour la maîtrise des risques en situation d’incendie. Pour le bois, matériau combustible, des travaux expérimentaux et de simulations numériques ont montré que ce matériau avait un comportement intéressant en situation d’incendie, car il se consume de façon maîtrisable. Cependant, ces travaux restent limités au regard de la complexité du comportement du matériau, des composants et des assemblages à base de bois. L’étude de la stabilité au feu des structures bois nécessite la connaissance de l’évolution des caractéristiques mécaniques et thermiques des liaisons (résistance et rigidité) dont dépend le comportement mécanique des structures. Pour une meilleure compréhension du fonctionnement mécanique des assemblages en situation d’incendie, la mise en place de modèles numériques, validés par essais, est nécessaire. Dans cette étude, l’objectif est d’utiliser un modèle numérique le plus précis possible afin de définir des méthodes simplifiées de calcul d’assemblages, facilement utilisables par les professionnels. Les résultats d’essais réalisés sur les assemblages bois-bois et bois-métal servant de base à la validation des modèles du comportement thermomécanique sont présentés. Il s’agit d’essais de traction longitudinale, transversale et d’essais de flexion sous conditions normales et sous actions thermiques normalisées. L’étude thermomécanique des assemblages est effectuée à partir de deux maillages tridimensionnels différents pour les calculs thermique et mécanique. Pour le modèle mécanique, les discontinuités sont prises en compte à travers des éléments de contact aux interfaces des pièces assemblées. Pour le calcul thermique, le maillage est continu et la résistance due au contact entre les éléments est ainsi négligée. Les modèles mécaniques et thermiques sont validés sur la base des résultats expérimentaux (courbes force-glissement et températures). Le modèle mécanique permet par ailleurs d’analyser la distribution des contraintes au sein des assemblages et d’évaluer l’influence de différents critères élasto-plastiques ou de rupture représentant le comportement mécanique du bois. Enfin, le modèle thermomécanique, a permis de simuler le comportement des assemblages testés en situation d’incendie. Le résultat utilisé pour valider le modèle thermomécanique est la durée de résistance au feu de l’assemblage. Cette durée est définie à l’aide des courbes glissement-temps obtenues par le modèle numérique. De bons résultats sont obtenus pour la prédiction des temps de rupture. L’évolution de la distribution des efforts sur les différents organes en fonction de la durée d’exposition au feu est aussi présentée. Ainsi, le modèle développé dans ce travail permet de bien représenter le comportement thermomécanique des assemblages étudiés. Il représente aussi un outil intéressant pour analyser le comportement au feu d’assemblages constitués de plusieurs organes métalliques. Il permet de servir de base pour développer une approche multiparamètre basée sur des plans d’expérience numérique. Ces travaux permettront de proposer des méthodes de dimensionnement simples, validés par les modèles numériques, et utilisables par les praticiens de la construction. / The knowledge of the behavior of structures under fire conditions is essential to control the risks during a fire. As timber is a combustible material, fire safety is of main importance for the development of its use in buildings. Although experimental and numerical studies exist in the literature, their number still limited regarding the variety of the configurations and the complexity of the mechanical behavior of the connections. Among the various structural components, the joints are characterized by a complex thermomechanical behavior due mainly to the geometrical configuration combining various materials (steel and timber). They govern the load-carrying capacity of the structure and its safety, as well in normal conditions as in fire situation. Due to their complex geometrical, physical and material configurations, the behavior of the connections in fire is one of the more difficult to predict. The development of generalized models requires the combination of research based both on the experimental results given by full scale tests and the development of sophisticated numerical models validated on these tests.The experimental results of tests realized on timber-to-timber and steel-to-timber connections used as a basis for the validation of the numerical models are presented. They concern tests of longitudinal and transversal tension and flexion under normal conditions and under standardized thermal actions. The thermomechanical analysis of the connections is made from two different three-dimensional meshings for the thermal and mechanical calculations. The thermal model is continuous to take account of the thermal continuity between the joint components. The mechanical model is discontinuous to consider the contact evolution between the joint components. The thermal model isused to predict the evolution of the temperature field inside the joint depending on the gas temperature. It is validated on the basis of measured temperatures during fire tests. The mechanical model is validated by comparison with the experimental results of joints in normal conditions. It allows the analysis of the distribution of stresses within the joints. The influence of various criteria to represent the mechanical behavior of timber is also studied. Finally, the thermomechanical model, based on previous both models, allowed to predict the behaviorof the tested connections in fire situation. The thermo-mechanical model is validated considering the fire resistance duration of some joints. This duration is defined by means of displacement-time curves obtained by the numerical model. The models showed a good capacity to simulate the failure times of the timber joints in fire situations. The application of the model gave the possibility to analyse the load distribution among the fasteners of the studied joints.The model developed in this work represents well the thermomechanical behavior of the tested connections. These developed and tested models can be used as general tool to analyze the behavior of a large variety of joint configurations to constitute a data base that can be used in safe and economic practice of fire engineering of wood joints.
|
Page generated in 0.0745 seconds