• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-Scale Computational Studies of Calcium (Ca<sup>2+</sup>) Signaling

Sun, Bin 01 January 2019 (has links)
Ca2+ is an important messenger that affects almost all cellular processes. Ca2+ signaling involves events that happen at various time-scales such as Ca2+ diffusion, trans-membrane Ca2+ transport and Ca2+-mediated protein-protein interactions. In this work, we utilized multi-scale computational methods to quantitatively characterize Ca2+ diffusion efficiency, Ca2+ binding thermodynamics and molecular bases of Ca2+-dependent protein-protein interaction. Specifically, we studied 1) the electrokinetic transport of Ca2+ in confined sub-µm geometry with complicated surfacial properties. We characterized the effective diffusion constant of Ca2+ in a cell-like environment, which helps to understand the spacial distribution of cytoplasmic Ca2+. 2) the association kinetics and activation mechanism of the protein phosphatase calcineurin (CaN) by its activator calmodulin (CaM) in the presence of Ca2+. We found that the association between CaM and CaN peptide is diffusion-limited and the rate could be tuned by charge density/distribution of CaN peptite. Moreover, we proposed an updated CaM/CaN interaction model in which a secondary interaction between CaN’s distal helix motif and CaM was highlighted. 3) the roles of Mg2+ and K+ in the active transport of Ca2+ by sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump. We found that Mg2+ most likely act as inhibitor while K+ as agonist in SERCA’s transport process of Ca2+. Results reported in this work shed insights into various aspects of Ca2+ signaling from molecular to cellular level.

Page generated in 0.0591 seconds