Spelling suggestions: "subject:"association dde données"" "subject:"association dee données""
1 |
Vers le suivi d’objets dans un cadre évidentiel : représentation, filtrage dynamique et association / toward object tracking using evidential framework : Representation, dynamic filtering and data associationRekik, Wafa 23 March 2015 (has links)
Les systèmes intelligents sont de plus en plus présents dans notre société à l’instar des systèmes de surveillance et de protection de sites civils ou militaires. Leur but est de détecter les intrus et remonter une alarme ou une menace à un opérateur distant. Dans nos travaux, nous nous intéressons à de tels systèmes avec comme objectif de gérer au mieux la qualité de l’information présentée à l’opérateur en termes de fiabilité et précision. Nous nous concentrons sur la modalité image en vue de gérer des détections à la fois incertaines et imprécises de façon à présenter des objets fiables à l’opérateur.Pour préciser notre problème nous posons les contraintes suivantes. La première est que le système soit modulaire, l’une des briques (ou sous-fonctions) du système étant la détection de fragments correspondant potentiellement à des objets. Notre deuxième contrainte est alors de n’utiliser que des informations issues de la géométrie des détections fragmentaires : localisation spatiale dans l’image et taille des détections. Une menace est alors supposée d’autant plus importante que les détections sont de tailles importantes et temporellement persistantes.Le cadre formel choisi est la théorie des fonctions de croyance qui permet de modéliser des données à la fois imprécises et incertaines. Les contributions de cette thèse concernent la représentation des objets en termes de localisation imprécise et incertaine et le filtrage des objets.La représentation pertinente des informations est un point clé pour les problèmes d’estimation ou la prise de décision. Une bonne représentation se reconnaît au fait qu’en découlent des critères simples et performants pour résoudre des sous-problèmes. La représentation proposée dans cette thèse a été valorisée par le fait qu’un critère d’association entre nouvelles détections (fragments) et objets en construction, a pu être défini d’une façon simple et rigoureuse. Rappelons que cette association est une étape clé pour de nombreux problèmes impliquant des données non étiquettées, ce qui étend notre contribution au-delà de l’application considérée.Le filtrage des données est utilisé dans de nombreuses méthodes ou algorithmes pour robustifier les résultats en s’appuyant sur la redondance attendue des données s’opposant à l’inconsistance du bruit. Nous avons alors formulé ce problème en termes d’estimation dynamique d’un cadre de discernement contenant les ‘vraies hypothèses’. Ce cadre est estimé dynamiquement avec la prise en compte de nouvelles données (ou observations) permettant de détecter deux principaux types d’erreurs : la duplication de certaines hypothèses (objets dans notre application), la présence de fausses alarmes (dues au bruit ou aux fausses détections dans notre cas).Pour finir nous montrons la possibilité de coupler nos briques de construction des objets et de filtrage de ces derniers avec une brique de suivi utilisant des informations plus haut niveau, telle que les algorithmes de tracking classiques de traitement d’image.Mots clés: théorie des fonctions des croyances, association de données, filtrage. / Intelligent systems are more and more present in our society, like the systems of surveillance and civilian or military sites protection. Their purpose is to detect intruders and present the alarms or threats to a distant operator. In our work, we are interested in such systems with the aim to better handle the quality of information presented to the operator in terms of reliability and precision. We focus on the image modality and we have to handle detections that are both uncertain and imprecise in order to present reliable objects to the operator.To specify our problem, we consider the following constraints. The first one is that the system is modular; one subpart of the system is the detection of fragments corresponding potentially to objects. Our second constraint is then to use only information derived from the geometry of these fragmentary detections: spatial location in the image and size of the detections. Then, a threat is supposed all the more important as the detections have an important size and are temporally persistent.The chosen formal framework is the belief functions theory that allows modeling imprecise and uncertain data. The contributions of this thesis deal with the objects representation in terms of imprecise and uncertain location of the objects and object filtering.The pertinent representation of information is a key point for estimation problems and decision making. A representation is good when simple and efficient criteria for the resolution of sub problems can be derived. The representation proposed has allowed us to derive, in a simple and rigorous way, an association criterion between new detections (fragments) and objects under construction. We remind that this association is a key step for several problems with unlabelled data that extends our contribution beyond of the considered application.Data filtering is used in many methods and algorithms to robustify the results using the expected data redundancy versus the noise inconsistency. Then, we formulated our problem in terms of dynamic estimation of a discernment frame including the 'true hypotheses'. This frame is dynamically estimated taking into account the new data (or observations) that allow us to detect two main types of errors, namely the duplication of some hypotheses (objects in our application) and the presence of false alarms (due to noise or false detections in our case).Finally, we show the possibility of coupling our sub-functions dealing with object construction and their filtering with a tracking process using higher level information such as classical tracking algorithm in image processing.Keywords: belief functions theory, data association, filtering.
|
2 |
Fusion multi-capteurs pour la représentation et le suivi des objets dynamiquesKmiotek, Pawel 07 December 2009 (has links) (PDF)
Le sujet de la thèse s'inscrit dans le cadre du projet "Véhicule intelligent et son intégration dans la ville du futur" mené au laboratoire Systèmes et Transports de l'Université de Technologie de Belfort-Montbéliard. L'objectif de ce projet est d'assurer la navigation autonome d'un véhicule dans un environnement urbain. Cette thèse s'intéresse plus particulièrement au problème de la perceptioon de l'environnement du véhicule en combinant plusieurs capteurs. Le but est de détecter et suivre des objets dynamiques et de les situer par rapport au véhicule instrumenté. La contribution de la thèse commence par la proposition d'une nouvelle technique de représentation des objets. Cette technique est basée sur l'utilisation des boîtes englobantes orientée (OBB) et exploite deux paradigmes qui sont l'incertitude Inter-Rays (IR) et l'hypothèse de la taille fixe des objets (FS). Pour augmenter la qualité de l'estimation d'état des objets et du suivi, l'algorithme de fusion de deux télémètres laser est présenté. Enfin, deux méthodes d'association de données sont décrites. La première, appelée NNF, est une adaptation de la technique du plus proche voisin à la nouvelle technique de représentation. La deuxième méthode permet de résoudre le problème de clustering des données télémétrique par une fusion d'un télémètre laser et d'un capteur stéréoscopique. Les algorithmes proposés sont testés et évalués à l'aide d'un simulateur développé dans le cadre de la thèse et sur un prototype de véhicule électrique.
|
3 |
Observatoire de trajectoire de piétons à l'aide d'un réseau de télémètre laser à balayage : application à l'intérieur des bâtiments / Pedestrian path monitoring using a scanning laser rangefinder network : application inside buildingsAdiaviakoye, Ladji 10 September 2015 (has links)
Dans la vie de tous les jours, nous assistons à des chorégraphies surprenantes dans les déplacements de foules de piétons. Les mécanismes qui sont à la base de la dynamique des foules humaines restent peu connus. Un des modes d’observation des piétons consiste à réaliser des mesures en conditions réelles (exemple : aéroport, gare, etc.). La trajectoire empruntée, la vitesse et l’accélération sont les données de base pour une telle analyse. C’est dans ce contexte que se placent nos travaux qui combinent étroitement observations en milieu naturel et expérimentations contrôlées. Nous avons proposé un système pour le suivi de plusieurs piétons dans un environnement fermé, à l’aide d’un réseau de télémètres lasers à balayage. Nous avons fait avancer l’état de l’art sur quatre plans.Premièrement, nous avons introduit une méthode de fusion automatique des données, permettant de discriminer les objets statiques (murs, poteaux, etc.) et aussi d’augmenter le taux de détection.Deuxièmement, nous avons proposé une méthode de détection non paramétrique basée sur la modélisation de la marche. L’algorithme estime la position du piéton, que celui-ci soit immobile ou en mouvement.Finalement, notre suivi repose sur la méthode Rao-Blackwell Monte Carlo Association de Données, avec la particularité de suivre un nombre variable de piétons.L’algorithme a été évalué quantitativement par des expériences de comportement social à différents niveaux de densité. Ces expériences ont eu lieu dans une école, près de 300 piétons ont été suivis dont une trentaine simultanément. / In everyday life, we witness surprising choreographies in the movements of crowds of pedestrians. The mechanisms that underlie the dynamics of human crowd dynamics remain poorly understood. One of the ways of observing pedestrians consists in taking measurements in real conditions (e. g. airport, station, etc.). The trajectory, speed and acceleration are the basic data for such an analysis. It is in this context that our work is placed, which closely combines observations in the natural environment with controlled experiments. We proposed a system for tracking multiple pedestrians in a closed environment using a network of scanning laser rangefinders. We have advanced the state of the art on four levels: first, we have introduced an automatic data fusion method to discriminate static objects (walls, poles, etc.) and also to increase the detection rate; second, we have proposed a non-parametric detection method based on walking modeling. The algorithm estimates the position of the pedestrian, whether stationary or moving, and finally, our monitoring is based on the Rao-Blackwell Monte Carlo Association Data Method, with the particularity of tracking a variable number of pedestrians, which was quantitatively evaluated by experiments in social behaviour at different levels of density. These experiments took place in a school, nearly 300 pedestrians were followed, about thirty of them simultaneously.
|
4 |
Solutions de localisation des systèmes mobiles de cartographie en environnements structurésNarayana, Keerthi 24 May 2011 (has links) (PDF)
La localisation automatique est une fonctionnalité importante des systèmes de cartographie mobiles (Mobile Mapping Systems, MMS). La présente thèse présente des solutions complémentaires aux méthodes de localisation utilisées actuellement dans un système MMS terrestre, qui utilise des récepteurs GPS et des centrales à inertie (Inertial Measurement Units, IMU). Un post-traitement, par lissage des données, permet d'améliorer les cartes 3D générées par un MMS. Cette approche est cependant insuffisante pour corriger les erreurs à variations lentes des capteurs. La présente thèse propose une technique de localisation alternative, fondée sur des scanners 2D à lasers. La méthode présentée ici, d'odométrie par laser, utilise des repères plans, qui sont fréquents dans les environnements créés par l'Homme : ces repères fixes permettent de déterminer le déplacement opéré par la plateforme mobile. Contrairement à la technique du SLAM (Simultaneous Localization and Mapping), utilisée pour la navigation des robots à l'intérieur d'un bâtiment, la transformation 3D est calculée sans avoir recours à une carte préétablie, mais en exploitant des propriétés invariantes des caractéristiques extraites de l'environnement. Nous proposons une approche par "division pour régner" (divide and conquer, D&C) qui simplifie les tâches d'association des repères (data association, DA) et de reconstruction du mouvement.
|
5 |
Suivi et classification d'objets multiples : contributions avec la théorie des fonctions de croyance / Multi-object tracking and classification : contributions with belief functions theoryHachour, Samir 05 June 2015 (has links)
Cette thèse aborde le problèeme du suivi et de la classification de plusieurs objets simultanément.Il est montré dans la thèese que les fonctions de croyance permettent d'améliorer les résultatsfournis par des méthodes classiques à base d'approches Bayésiennes. En particulier, une précédenteapproche développée dans le cas d'un seul objet est étendue au cas de plusieurs objets. Il est montréque dans toutes les approches multi-objets, la phase d'association entre observations et objetsconnus est fondamentale. Cette thèse propose également de nouvelles méthodes d'associationcrédales qui apparaissent plus robustes que celles trouvées dans la littérature. Enfin, est abordée laquestion de la classification multi-capteurs qui nécessite une seconde phase d'association. Dans cedernier cas, deux architectures de fusion des données capteurs sont proposées, une dite centraliséeet une autre dite distribuée. De nombreuses comparaisons illustrent l'intérêt de ces travaux, queles classes des objets soient constantes ou variantes dans le temps. / This thesis deals with multi-objet tracking and classification problem. It was shown that belieffunctions allow the results of classical Bayesian methods to be improved. In particular, a recentapproach dedicated to a single object classification which is extended to multi-object framework. Itwas shown that detected observations to known objects assignment is a fundamental issue in multiobjecttracking and classification solutions. New assignment solutions based on belief functionsare proposed in this thesis, they are shown to be more robust than the other credal solutions fromrecent literature. Finally, the issue of multi-sensor classification that requires a second phase ofassignment is addressed. In the latter case, two different multi-sensor architectures are proposed, aso-called centralized one and another said distributed. Many comparisons illustrate the importanceof this work, in both situations of constant and changing objects classes.
|
6 |
Choix d'un associateur 2-D pour le balayage multiple et optimisation de l'estimation des pistesMoreau, Francis January 2009 (has links)
No description available.
|
7 |
Choix d'un associateur 2-D pour le balayage multiple et optimisation de l'estimation des pistesMoreau, Francis January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
Page generated in 0.1367 seconds