• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • Tagged with
  • 13
  • 13
  • 13
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Towards a holographic description of pulsar glitch mechanism

Misra, Anuj January 2015 (has links)
This work aims to review the progress in understanding the underlining physics of pulsar glitches: beginning from the pedagogical development of the subject to eventually motivating the use of AdS/CFT techniques in studying a certain class of condensed matter systems. The foundation of this work is built upon the Gross Pitaevskii (GP) model of super-fluidity applied to the interior matter of neutron stars, where the condensate wave function acts as the order parameter of the macroscopic coherence theory. The excitation modes of the field equations are found to be solitonic vortices, which then go on to present a theoretical basis to the plausible theories of pulsar glitches involving vortex dynamics. The second major thrust of this thesis is in reviewing the application of AdS/CFT in study of strongly-coupled condensed matter systems, with special attention to the models of holographic superfluidity that admit vortex-like solutions. The basic identification of the characteristic free energy configuration of global vortices in the AdS/CFT prescription enables to motivate its use in studying the pulsar glitch mechanism. The last part of this work traces the conclusions of this review and attempts to present the current state-of-progress of the field with its extensive domain of purview and open lines of inquiry.
12

A study of chameleon-photon mixing from pulsars

Sikhonde, Muzikayise E January 2012 (has links)
Includes bibliographical references. / A number of solutions to the dark energy problem have been proposed in literature, the simplest is the cosmological constant A. The cosmological constant lacks theoretical explanation for its extremely small value, thus dark energy is more generally modelled as a quintessence scalar field rolling down a flat potential.
13

Cosmic acceleration and the coincidence problem

Kubwimana, Jean Claude January 2009 (has links)
Includes abstract. / Includes bibliographical references (leaves 83-89). / In the standard model of the Universe, the cosmos has only accelerated once since decoupling and only recently, at around a redshift of z ̃ 0.5 as supported by different observations including Type Ia Supernovae (SNIa), the Cosmic Microwave Background (CMB), Large Scale Structure (LSS), and Weak Lensing (WL). This confirmation however, lacks a fundamental physics explanation. The hypothetical form of energy termed 'dark energy' (DE) assumed to account for that acceleration behavior, is still mysterious and why its dominance only occurred recently is a profound problem widely known as the coincidence problem. So far all attempts for resolving the coincidence the problem have been unsatisfactory. Here we investigate a possible solution to the coincidence problem in the form of multiples phases of acceleration (MPA). If there were more than one phase of acceleration between now and decoupling, then the current phase of acceleration would be much less special, alleviating the coincidence problem. We use a modified Markov Chain Monte Carlo (MCMC) technique together with the WMAP five year TT data to search for parameters allowing a second phase of acceleration. Despite extensive search we find no models that simultaneously fit the WMAP data and yield a second phase of acceleration, ruling out this particular set of models as the solution to the coincidence problem.

Page generated in 0.1055 seconds