Spelling suggestions: "subject:"asymmetric bsynthesis"" "subject:"asymmetric csynthesis""
191 |
Synthesis, Structural, and Catalytic Studies of Palladium Amino Acid ComplexesHobart, David B. Jr. 27 April 2016 (has links)
Palladium(II) acetate and palladium(II) chloride react with amino acids in acetone/water to yield cis or trans square planar bis-chelated palladium amino acid complexes. The naturally occurring amino acids and some N-alkylated and substituted derivatives and homologs were evaluated as ligands. Thirty-eight amino acids in total were investigated as ligands. The formation of aquo complexes in water was observed and studied by 13C NMR spectroscopy and modeled by DFT calculations. Each class of amino acid ligand is catalytically active with respect to the oxidative coupling of olefins and phenylboronic acids. Some enantioselectivity is observed and the formation of products not reported in other Pd(II) oxidative couplings is seen. Both activated and non-activated alkenes were oxidatively coupled to phenylboronic acids incorporating both electron-donating and electron-withdrawing groups. The crystal structures of nineteen catalyst complexes were obtained. The extended lattice structures arise from N-H..O or O..(HOH)..O hydrogen bonding. NMR, HRMS, FTIR, single crystal XRD, and powder XRD data are evaluated. / Ph. D.
|
192 |
Development of the Cross-Coupling Reactions Using α-Bromocarbonyl Compounds / α-ブロモカルボニル化合物を用いたカップリング反応の開発Takeshima, Aika 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25132号 / 理博第5039号 / 新制||理||1718(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 依光 英樹, 教授 畠山 琢次, 教授 松永 茂樹 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
|
193 |
Modified nucleosides and oligonucleotides as ligands for asymmetric reactionsNuzzolo, Marzia January 2010 (has links)
Development of chiral ligands capable of achieving high selectivity for various asymmetric catalytic reactions has been an important aim of both academia and industry. Nature is capable to selectively catalyze chemical reactions by using enzymes. An ideal catalyst would combine the selectivity of nature and the reactivity of man-made catalysts based on transition metal complexes. The two biomolecules chosen to achieve this are DNA and PNA. DNA is a chiral molecule with high binding selectivity towards small molecules and has been used as ligand for asymmetric catalysis. PNA is an achiral structural analogue of DNA that can form duplexes with DNA. To produce DNA based catalysts it is necessary to introduce a ligand such as a phosphine that will strongly coordinate to transition metals. To achieve this, functionalized linkers need to be introduced into a DNA strand, to covalently couple the phosphine moiety at a specific location of the DNA strand. Amine linkers and several modified nucleosides have been prepared containing thiol and amine functionalities and some of them were successfully introduced into DNA strands to function as linkers for the introduction of phosphine functionalities. Those strands were purified and an adequate procedure was developed for their analysis by MALDI-TOF. Diphenylphosphino carboxylic acids have been coupled to amine modified deoxyuridines by amide bond formation. The same coupling method has been used for oligonucleotides. DNA strands containing phosphine moieties were characterized by MALDI-TOF and ³¹P NMR spectrometry. ³¹P NMR spectroscopy was also used to confirm coordination of a phosphine modified 15-mer to [PdCl(η³-allyl)]₂. The phosphine modified nucleobases were also tested as ligands for palladium catalyzed allylic alkylation and allylic amination with diphenylallyl acetate as substrate although no enantioselectivity was observed. A PNA monomer was also modified with a bidentate sulfur protected phosphine and successfully introduced into a short PNA strand using manual solid phase synthesis. This strand was analyzed by MALDI-TOF. Moreover, preliminary studies were performed to test the use of aptamers as scaffolds for targets containing a ligand functionality.
|
194 |
New systems for catalytic asymmetric epoxidationParker, Phillip January 2009 (has links)
This thesis describes the catalytic asymmetric epoxidation of olefins mediated by chiral iminum salts. The first chapter introduces some of the most novel and effective catalytic asymmetric methods for preparing chiral oxiranes. The second chapter is divided into three sections. The first section of chapter two is dedicated to our efforts to develop new aqueous oxidative conditions using both hydrogen peroxide and sodium hypochlorite as efficient, green oxidants that remove the temperature boundaries observed with the use of Oxone® as the stoichiometric oxidant. A wider range of available temperatures was examined allowing optimization of both oxidative systems. Ethereal hydrogen peroxide was observed to mediate asymmetric epoxidation within an acetonitrile monophasic co-solvent system giving enantioselectivities of up to 56%. When sodium hypochlorite was used in a biphasic solvent system in conjunction with dichloromethane; it was observed to mediate oxidation of the substrate alkenes in up to 71% ee. The second and third sections of chapter two are dedicated to our efforts to synthesize chiral iminium salts as catalysts for asymmetric epoxidation based on a biphenyl azepinium salt catalyst structure. From previous work within the Page group, the asymmetric synthesis and subsequent defined stereochemistry of a chiral carbon atom α to the iminium nitrogen atom was shown to have significant effect on the enantiocontrol of epoxidation using the iminium salt catalyst. Work was completed on biphenyl azepinium salt catalysts, inserting an alkyl or aryl Grignard reagent into the iminium bond using a pre-defined dioxane unit as a chiral auxiliary. Oxidation of the subsequent azepine gave a single diastereoisomerically pure azepinium salt. The methyl analogue of this sub-family of azepinium catalysts has been shown to give up to 81% ee for epoxidation of 1-phenylcyclohexene, furthermore, the binaphthalene azepinium salt with an additional methyl group was also synthesized and was shown to give up to 93% for epoxidation of 1-phenylcyclohexene. Continuation of the substitution α to the nitrogen atom gave rise to an interesting tetracyclic (biphenyl) azepinum salt catalyst. Construction of an asymmetric oxazolidine ring unit encapsulating the azepinium nitrogen and one of the methylene carbon atoms was achieved. In doing so two chiral centres α to the nitrogen atom were generated. The azepinium chiral carbon atom was populated by an addition methyl group with variation in the substitution on the oxazolidine chiral carbon atom. The benzyl analogue of this sub-family of tetracyclic azepinium catalysts has shown to give up to 79% ee for epoxidation 1-phenylcyclohexene. The third chapter is the experimental section and is dedicated to the methods of synthesis and characterization of the compounds mentioned in the previous chapter. X-ray reports regarding the crystallographic analysis of the structures presented in chapter two are provided in appendix A. Appendix B contains the analytical spectra for the determination of enantiomeric excess of the epoxides.
|
195 |
Catalytic asymmetric carbon-carbon bond formation using alkenes as alkylmetal equivalentsMaksymowicz, Rebecca Marie January 2014 (has links)
The development of new methods for carbon-carbon bond formation is a challenging topic at the heart of organic chemistry. Over the past ten years a number of methods for the catalytic asymmetric 1,4-addition of organometallic reagents such as Grignard, organozinc and organoaluminium reagents have been reported. However these reagents suffer from many limitations, including the need for cryogenic temperatures, which prevent their widespread use. Here we have developed a new asymmetric method: the copper-catalysed enantioselective 1,4-addition of alkylzirconium compounds, generated in situM/em>, from alkenes. A general introduction into the formation of carbon-carbon bonds and catalytic asymmetric 1,4-addition reactions is first given. We then focus our attention on hydrometallation reactions and their current use in the addition of alkenyl and alkyl groups in asymmetric 1,4-addition reactions. In Chapter two, we introduce the development of our methodology. We found that by using copper complex <b>(S,S,S)-A</b>, high enantioselectivities can be achieved (up to 96% ee), in the presence of a broad range of functional groups which are often not compatible with comparable methods using pre-made organometallic reagents. The method gives good enantioselectivity at room temperature, in a wide range of solvents, using readily available alkenes. Chapter three discusses the expansion of our method to the 1,4- and 1,6-addition to complex steroids. Modified conditions were then found to enable the addition to β-substituted enones, to form quaternary centres. This is followed by the successful addition to α,β-unsaturated lactones, another difficult substrate class. All these results gave excellent selectivity. In summary, we have developed a new reaction which offers an alternative to current methods reported in the literature. This robust reaction can tolerate a variety of functional groups and we hope that this will aid in the synthesis of important molecules.
|
196 |
Underexploited (ipso, ortho) microbial arene dihydroxylation : uses in synthesis & catalysisGriffen, Julia Anne January 2013 (has links)
This thesis sought to expand upon the synthetic application of the underexploited ipso, ortho diene cis-diol microbial arene oxidation product from benzoic acid. The microbial oxidation of benzoic acid by mutant strains of bacteria to give the ipso, otho diene cis-diol may be considered to be a green and clean method. This biocatalytic route yields large quantities of an enantiopure chiral building block, which is not assessable via traditional synthetic methods. The fermentation product has seen application towards the synthesis of aminocylitols, which have been tested for their biological activity. Attempts to synthesise the fully oxygenated counterparts, cyclitols, were investigated. Expansion of previous work using a bromine substituted derivative led to a range of cross-coupled and iron co-ordinated products. Finally, a range of novel chiral acids and ketones were synthesised and evaluated for their catalytic activity towards asymmetric epoxidation.
|
197 |
Nouvelles voies de synthèse énantiosélective pour l'accès à des composés difluorométhylés / Development of new strategies to access enantiopure difluoromethylated compoundsBatisse, Chloé 07 December 2018 (has links)
En dépit de sa rareté au sein des produits naturels et des processus biologiques, le fluor joue un rôle de plus en plus important dans nos vies quotidiennes. Un atome de fluor ou un groupement fluoré, lorsqu’il fait partie d’une molécule biologiquement active, permet d’améliorer drastiquement ses propriétés physiques, chimiques et biologiques. Le groupement -CHF2, en plus de posséder les propriétés remarquables communes à de nombreuses espèces émergentes fluorées, est considéré comme un bioisostère des groupements hydroxyle, thiol et amino. Il peut également être engagé dans des liaisons de type hydrogène grâce à son proton acide. Cependant, les voies de synthèse permettant d’introduire stéréosélectivement le groupe -CHF2 sont encore peu nombreuses. Par exemple, seuls peu de groupes ont concentré leurs efforts sur la synthèse d’alcools α,α-difluorométhylés. Afin de remédier à ce manque de méthodologies, deux stratégies ont été imaginées au sein de notre équipe. La première consiste à utiliser un sulfoxyde α,α-difluorométhylé énantiopur en tant qu’inducteur de chiralité. La seconde méthode repose sur l’utilisation de cyclopeptoïdes chiraux lors de la difluorométhylation énantiosélective de dérivés carbonylés dans des conditions de catalyse à transfert de phase. Ces deux stratégies ainsi que les résultats qui ont été obtenus au cours de ce projet de thèse sont exposés dans le présent manuscrit. / Despite being largely absent from natural products and biological processes, fluorine plays an increasingly important role in numerous areas of our daily life. The presence of fluorine atoms or fluoroalkyl groups in bioactive molecules can indeed deeply modify their physical, chemical and biological properties. In addition to these outstanding properties common to many emerging fluorinated groups, the -CHF2 group has been shown to be an interesting bioisostere of hydroxyl, thiol and amine groups and a strong hydrogen bond donor. However, in contrast to enantioselective trifluoromethylation, the enantioselective introduction of a difluoromethyl group is still in its infancy. For instance only few examples in the literature describe the synthesis of enantioenriched α,α-difluoromethyl alcohols. As part of our study to overcome this scarcity, we envisaged two different strategies to synthesise these compounds. The first method aimed to access highly enantioenriched α,α-difluoromethyl alcohols by using an enantiopure aryl α,α-difluoromethyl sulfoxide as chiral and traceless auxiliary. Phase transfer catalysis was chosen as a second strategy for the enantioselective difluoromethylation of carbonyl derivatives in presence of chiral cyclopeptoïds. Those two methods and the results obtained are discussed in this manuscript.
|
198 |
Synthesis and use of nitrogen heterocycles in metal mediated reactionsIllesinghe, Jayamini P. M. January 2004 (has links)
Abstract not available
|
199 |
Developments in the Field of Aza-Diels-Alder Reactions, Catalytic Michael Additions and Automated SynthesisModin, Stefan January 2004 (has links)
<p>The development of new aza-bicyclic structures with potential applications as ligands synthesised <i>via</i> an aza-Diels-Alder cycloaddition has been studied. The studies are concerning the i) development of large scale aza-Diels-Alder reaction, ii) development of a fast and simple route to bicyclic diamine ligands, iii) development of new aza-Diels-Alder adducts from different dienes, iv) development and application of bicyclic N,P ligands for catalytic Michael additions and v) development of robotized asymmetric transfer hydrogenation reactions.</p><p>i) Development of large-scale aza-Diels-Alder reaction giving up to 110 g pure product, in ordinary laboratory equipment without the need of any flash chromatography.</p><p>ii) Development of a new synthetic route to bicyclic diamine ligands highly useful for asymmetric rearrangement of olefin oxides to allylic alcohols and thereby shortening the ligand synthesis dramatically and moreover providing with a faster access to those ligands.</p><p>iii) Expanding the scope of the aza-Diels-Alder reaction by the use of spirodienes and anthracene as dienes.</p><p>iv) Development and application of a new bidentate ligands for catalytic Michael addition to cyclic enones using 5 mol % ligand giving the product in 71 % ee.</p><p>v) Utilisation of Chemspeed ASW 2000 in catalytic transfer hydrogenation and solving of problems regarding use of highly air sensitive reactions in an automated environment.</p>
|
200 |
Developments in the Field of Aza-Diels-Alder Reactions, Catalytic Michael Additions and Automated SynthesisModin, Stefan January 2004 (has links)
The development of new aza-bicyclic structures with potential applications as ligands synthesised via an aza-Diels-Alder cycloaddition has been studied. The studies are concerning the i) development of large scale aza-Diels-Alder reaction, ii) development of a fast and simple route to bicyclic diamine ligands, iii) development of new aza-Diels-Alder adducts from different dienes, iv) development and application of bicyclic N,P ligands for catalytic Michael additions and v) development of robotized asymmetric transfer hydrogenation reactions. i) Development of large-scale aza-Diels-Alder reaction giving up to 110 g pure product, in ordinary laboratory equipment without the need of any flash chromatography. ii) Development of a new synthetic route to bicyclic diamine ligands highly useful for asymmetric rearrangement of olefin oxides to allylic alcohols and thereby shortening the ligand synthesis dramatically and moreover providing with a faster access to those ligands. iii) Expanding the scope of the aza-Diels-Alder reaction by the use of spirodienes and anthracene as dienes. iv) Development and application of a new bidentate ligands for catalytic Michael addition to cyclic enones using 5 mol % ligand giving the product in 71 % ee. v) Utilisation of Chemspeed ASW 2000 in catalytic transfer hydrogenation and solving of problems regarding use of highly air sensitive reactions in an automated environment.
|
Page generated in 0.0734 seconds