• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isomerisation of palladium π-allyl complexes

Dooley, Ruth Elizabeth January 2016 (has links)
The palladium-catalysed asymmetric allylic alkylation is a mild and versatile bond forming reaction between a nucleophile and allylic electrophile. The wide scope of nucleophiles used, and the high regio- and stereoselectivity obtainable renders this transformation an important technique in enantioselective synthesis. The mechanism is known to go via a key palladium π-allyl intermediate, followed by nucleophilic addition occurring at the terminal allylic carbon. Both the formation of the palladium π-allyl, and the nucleophilic addition to generate the alkylated product and palladium(0) proceed with high levels of inversion of stereochemistry, and both provide an opportunity for the induction of stereochemistry. However in the case of ligand controlled nucleophilic addition memory effects have been observed. The epimerisation of the palladium π-allyl before nucleophilic attack is key to achieving high levels of selectivity when racemic starting materials and chiral ligands are employed. Previous work in the Lloyd-Jones group has determined that prolonging the lifetime of the palladium π-allyl species, either by the use of weakly coordinating counter ions or slow addition of the nucleophile reduces this memory effect, however increasing the rate of epimerisation would have a result in a similar effect. One of the mechanisms resulting in the epimerisation of the palladium π-allyl species is mediated by palladium(0), however the details of the mechanism are not well understood. We describe the synthesis of a diastereotopic palladium cyclohexenyl ester and labelled the complex with 108palladium and d3 at the cyclohexenyl ester. Using simultaneous 31P NMR and mass spectrometry, we have acquired strong evidence against mechanisms involving a single electron transfer, as proposed by Stille, of formation of a dinuclear palladium(I) species followed by an inversion event, and we have gained evidence supporting the direct nucleophilic addition of the palladium(0), resulting in inversion of stereochemistry. The differences in rates of nucleophilic attack involving monodentate and bidentate phosphine ligands on both the palladium I-cyclohexenyl ester have also been explored. Throughout the mechanistic investigation, it was noted that the 31P NMR spectroscopy experiment used gave non-quantitative results, and in fact the differences in quantification of the species varied with the spectrometer used. We also describe our investigations into where these differences arise from and an optimum set of parameters for quantitative 31P NMR spectroscopy. The conclusions are also applicable to other heternuclear NMR spectroscopic experiments.
2

Part I Asymmetric Allylic Alkylation Catalyzed by Pd-Dendron Complexes Part II Self-assembly of n-/p- type Heterojunction Nanomaterials

Tu, Siyu 27 July 2011 (has links)
No description available.
3

Chiral Bisphosphinites For Asymmetric Catalysis

Sharma, Rakesh Kumar 01 1900 (has links)
Chiral bisphosphinites are well-documented alternatives for chiral bisphosphines as ligands that can be exploited in various asymmpetric syntheses. Particularly, vicinal biarylphophinite ligands give a seven membered chelate ring similar to the successful DIOP on coordination to the metal. RajanBabu and coworkers have described asymmetric bisphosphinites obtained by functionalization of sugars and have shown their utility in enantioselective hydrogenation, hydrovinylation and hydrocynation reactions. Despite the interesting reactions demonstrated by bisphosphinites, not much attention has been paid to their synthesis and catalysis. This is probably due to the known moisture and oxygen sensitivity that makes their use limited. In the present thesis, a series of C1 an C2 symmetric bisphosphinite complexes of Pd(II) and Pt(II) have been synthesized directly from various naturally occurring chiral alcohols using a modified template method. A number of asymmetric catalytic reactions have been developed such as allylation of imines, allylation of aldehydes, allylic allylation, allylic alkylation, hydrosilylation of alkenes and regioselective allylation of oxiranes. Allylation of imines was carried out in essentially neutral conditions using Pd(II) catalysts and water was shown to accelerate the reaction. Interestingly acetic acid was required as a promoter in asymmetric allylation of cinnamaldehyde in the Pt(II) catalyzed reaction whereas water was a deterrent. Hydrosilylation reaction was carried out in solvent free conditions with high turnover numbers (.1000). Ascorbic acid based complexes produced the highest enantioselectivity for the asymmetric allylic alkylation reaction (97 % ee) and hydrosilylation of styrene (98% ee). These enantioselectivity results are the best obtained using ligands directly prepared from natural products.

Page generated in 0.1333 seconds