• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 9
  • 9
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A theoretical investigation of the resolution of chiral amines via chiral macrocycles and the synthesis of some macrocyclic precursors.

January 2006 (has links)
No abstract available. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2006.
2

A study of heavy flavour production at centre-of-mass energies between 183 and 207 GeV

Brodet, Eyal January 2004 (has links)
No description available.
3

Dienes as a new class of substrate for asymmetric catalysis : hydrogenation and hydroboration

Nguyen, Bao Ngoc January 2007 (has links)
No description available.
4

New ruthenium catalysts for asymmetric hydrogenation /

Díaz Valenzuela, María Belén. January 2007 (has links)
Thesis (Ph.D.) - University of St Andrews, November 2007. / Restricted until 15th November 2008.
5

Studies in the asymmetric reduction of (3s)-3-amino-1-chloro-4-phenyl-2-butanone derivatives

Kitagawa, Kristen 04 January 2010 (has links)
This thesis focuses on the asymmetric reduction of N-protected derivatives of (3S)-3-amino-1-chloro-4-phenyl-2-butanone to their corresponding diastereomeric alcohol products, which are key intermediates in the synthesis of HIV protease inhibitors. Although the stereoselective synthesis of the (S,S) alcohol product is easily achieved, preparing the (R,S) diastereomer is much more challenging. I investigated three diastereoselective reduction processes: 1) Meerwein-Ponndorf-Verley (MPV) reduction, 2) asymmetric transfer hydrogenation, and 3) boron reducing agents. The diastereoselectivity of the MPV reduction still favored the (S,S) product; however, I discovered a significant rate enhancement when the standard catalyst (aluminum isopropoxide) was replaced with aluminum tert-butoxide. Many reaction variables were investigated in the asymmetric transfer hydrogenation reaction and the diastereoselectivity was improved to give a ratio of the desired (R,S) diastereomer to the undesired (S,S) alcohol of 9.5:1. Using chiral oxazaborolidine catalysts, an unprecedented (R,S) to (S,S) ratio of 9.5:1 was achieved. Finally, I investigated the effect of the N-protecting group on the stereoselectivity of the reduction. When the original boc-protecting group was replaced with a phthalimide group, the diastereoselectivity of the MPV reduction was reversed to favor the desired (R,S) product.
6

Palladium catalysed asymmetric hydroxy- and alkoxycarbonylation of alkenes

Durrani, Jamie T. January 2015 (has links)
Palladium catalysed asymmetric hydroxy- and alkoxycarbonylation reactions of alkenes have the potential to deliver valuable chiral carboxylic acid and ester building blocks from cheap feedstocks: alkenes, carbon monoxide and water (alcohols in the case of alkoxycarbonylation). Despite the attractive nature of these reactions, extensive research has so far been unable to produce effective catalysts which are capable of controlling both regio- and enantioselectivity. Building on exciting recent results involving the use of highly enantioselective palladium catalysts derived from Phanephos-type ligands, this research focuses on paracyclophane-diphosphines and their use in asymmetric hydroxy- and alkoxycarbonylation reactions. An investigation into reaction conditions analysed several factors, including solvents, CO-pressure, acidic additives and halide sources, to provide optimal activity and selectivities. Two novel electron-poor paracyclophane-diphosphines and their mono- and di-palladium complexes were synthesised and shown to provide exceptional levels of regioselectivity while maintaining high levels of asymmetric induction. These are the first such examples of hydroxy- or alkoxycarbonylation catalysts to facilitate simultaneous control over both regio- and enantioselectivity. The most effective catalyst was used to promote the reactions of a selection of aryl alkenes and was shown to be tolerant of several different functional groups. A selection of non-symmetric paracyclophane-diphosphine ligands and their palladium complexes were also synthesised and assessed for their performance in hydroxy- and alkoxycarbonylation. We also report the use of Phanephos-type ligands to promote the highly enantioselective hydroxycarbonylation of N-(p-toluenesulfonyl)-3-pyrroline to deliver a chiral proline derivative in high ee.
7

Enantioselective hydrogenation using ruthenium complexes of tridentate ligands

Phillips, Scott D. January 2011 (has links)
This thesis describes the development of the [RuCl₂(P N N)L] catalytic system for asymmetric hydrogenation. It has been demonstrated that the current system is efficient in preparing a range of bulky chiral alcohols in good enantioselectivity, many of which are likely to be inaccessible using the more classic [RuCl₂(P P)N N)] system developed by Noyori and coworkers. It has been shown that the current system is tolerant of a range of substrate electronic effects as well as the presence of heteroaromatic functionality, thus showing its applicability in synthesis. This has been extended to prepare a number of bulky derivatives of synthetically important molecules. The demonstration of this is significant as in drug design, for example, studies that aim to extend lipophilicity or steric bulk make the ability to prepare alcohols across the full range of steric properties important. We have shown that chiral alcohols with adjacent gem-dimethyl groups can be prepared in high enantioselectivity and their conversion into other valuable molecules, such as chiral lactones has been demonstrated. Detailed mechanistic studies have been undertaken for the present system in order to aid rational design of new, more active and selective catalysts. A number of achiral variants of the original system have been prepared and the key features of ligand structure for efficient catalysis have been identified. This was accomplished by rigorous kinetic analysis of each complex, using specialist gas-uptake monitoring equipment. The key features of catalyst structure and optimal reaction conditions for efficient asymmetric hydrogenation have been identified. Our greater understanding of the present system allowed us to rationally design new catalysts of for enantioselective hydrogenation. Our aim was to be able to tune the catalyst structure to carry out hydrogenation of a greater variety of ketone substrate with high activity and selectivity. We have successfully prepared second generation catalysts that show enhanced enantioselectivity for a variety of substrates, many of which were problematic with the Noyori system.
8

Novel applications of Morita-Baylis-Hillman methodology in organic synthesis

Mciteka, Lulama Patrick 22 April 2013 (has links)
The overall approach in the present investigation has been to explore applications of the Morita-Baylis-Hillman (MBH) reaction in asymmetric synthesis and in the continuation of systems with medicinal potential. To this end, a series of varied camphor-derived acrylate esters was prepared to serve as chiral substrates in asymmetric Morita-Baylis- Hillman reactions. Reduction of N-substituted camphor-10-sulfonamides afforded the 3- exo-hydroxy derivatives as the major products. Acylation of the corresponding sodium alkoxides gave the desired 3-exo-acrylate esters, isolation of which was complicated by concomitant formation of hydrochlorinated and diastereomeric competition products. Bulky camphorsulfonamides containing alkyl, dialkyl, aromatic and adamantyl groups were selected as N-substituents with the view of achieving stereoselective outcome in subsequent MBH reactions. The synthesis of novel camphor-derived Morita-Baylis-Hillman adducts using various pyridine-carboxaldehydes proceeded with exceptionally high yields with diastereoselectivities ranging from 7-33 % d.e. Both 1D and 2D NMR and HRMS techniques were employed to confirm the structures and an extensive study of the electropositive fragmentation patterns of a number of camphor-derived chiral acrylate esters was conducted. Attention has also been given to the application of MBH methodology in the construction of heterocyclic ‘cinnamate-like’ AZT conjugates which were designed to serve as dualaction HIV-1 integrase-reverse transcriptase (IN-RT) inhibitors. A number of pyridine carboxaldehyde-derived MBH adducts were synthesized using methyl, ethyl and t-butyl acrylates in the presence of 3-hydroxyquinuclidine (3-HQ) as catalyst. The yields for these reactions were excellent. The resulting MBH adducts were acetylated and subjected to aza-Michael addition using propargylamine. The resulting alkylamino compounds were then used in ‘Click reactions’ to form the targeted AZT-conjugates in moderate to excellent yield. In silico docking of computer modelled AZT-conjugates into the HIV-1 integrase and reverse transcriptase enzyme-active sites and potential hydrogen-bonding interaction with active-site amino acid residues were identified. The electrospray MS fragmentations of the AZT and the novel AZT-conjugates were also investigated and common fragmentation pathways were identified.
9

Synthesis and evaluation of α-fluoro analogues of capsaicin and 2-(aminomethyl)piperidine derivatives

Moraux, Thomas January 2011 (has links)
Chapter 1 gives an overview of the fluorine chemistry field, from its early developments to recent applications in medicinal chemistry. The development of asymmetric electrophilic or nucleophilic installation of fluorine in organic molecules is highlighten. Chapter 2 of this thesis discusses the enantioselective synthesis of α-fluoroamides. The study is applied to the synthesis of fluoroenantiomers of the bioactive molecule capsaicin and short-chain analogues. The biological activity of these compounds is assayed with the TRPV1 receptor. Results show that enantioselective α-fluoroamides (R)-97, (R)-99 and (S)-99 can generate differentiated biological responses, from TRPV1 agonists to TRPV1 antagonists. Chapter 3 focuses on the optimisation and development of 2-(aminomethyl)piperidine (R)-251 dihydrochloride. The development of 2-(aminomethyl)piperidine (R)-251 as its ditetrafluoroborate salt proved to offer excellent reactivity and solubility for the preparation of derivatives. This tetrafluoroborate salt was used to improve the syntheses of organocatalysts 2,2,2-trifluoro-N-(piperidin-2-ylmethyl)acetamide 363 and 4-methyl-N-(piperidin-2-ylmethyl)benzenesulfonamide 364.The catalytic properties of these latter two molecules for asymmetric Mannich reaction is demonstrated. Both (R)-363 and (R)-364 show up to 86% ee, in a typical 20 mol% loading, but loading of (R)-363 as low as 5 mol% still induces the catalysis.

Page generated in 0.0475 seconds