• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electron-paramagnetic-resonance spectroscopy study of radiation-damage-induced cathodoluminescence in quartz, Athabasca Basin

Botis, Sanda Maria 08 September 2005
This thesis presents the results of a combined cathodoluminescence (CL) and electron paramagnetic resonance (EPR) spectroscopic study of quartz from the uranium-mineralized Athabasca Basin. CL imaging not only distinguishes detrital quartz grains from their secondary overgrowths but also is able to differentiate two generations of overgrowths in the Athabasca sandstones. Moreover, the Athabasca quartz samples are characterized by three types of bright CL: 1) haloes around U- and Th-bearing mineral inclusions, 2) patches associated with U-bearing minerals in matrices or pores and 3) continuous rims in samples with or without any visible U-bearing minerals. These three types of bright CL are all of constant widths of ~35-45 Ým, indicative of bombardments of alpha particles emitted from the 238U, 235U and 232Th decay series. CL spectral analyses show that the radiation damaged areas, relative to their undamaged hosts, are characterized by intense but broad emission bands at ~350 nm and 620-650 nm. <p>Detailed EPR measurements of the Athabasca quartz samples revealed six paramagnetic defects: one oxygen vacancy center (E1'), three silicon vacancy hole centers (O23¡V/H+(I), O23¡V/H+(II) and O23¡V/M+) and two O2¡V peroxy centers. Moreover, dissolution experiments using concentrated HF showed that that the silicon vacancy hole centers and the peroxy centers are concentrated in the radiation-damaged rims/fractures, whereas the oxygen vacancy center (E1') is evenly distributed in quartz grains. CL and EPR data of quartz samples after isochronal annealing experiments suggest that the silicon vacancy hole centers and the peroxy centers are most likely responsible for the characteristic ultraviolet CL and the red CL, respectively. <p>CL haloes in detrital quartz grains are ubiquitous in the Athabasca sandstones. CL patches are also widespread but are best developed in altered sandstones close to the unconformity or faults/fractures. Continuous CL rims, however, are more restricted in occurrences and are best developed at the high-grade Cigar Lake and McArthur River deposits, where they are restricted to lithological boundaries and faults and are pervasively developed in mineralized samples and associated alteration haloes close to the unconformity. At the Key Lake deposit, continuous rims occur only in mineralized samples close to the unconformity. Continuous CL rims are absent in basement rocks below mineralization, including those at the Cigar Lake and McArthur River deposits. The occurrence of radiation damages in Athabasca quartz have also been confirmed by detailed EPR measurements, which are significantly more sensitive than CL imaging. <p>Continuous CL rims on Athabasca quartz grains most likely record bombardments of alpha particles emitted from U-bearing mineralization fluids. Therefore, their associations with the unconformity, lithological boundaries and faults provide direct evidence for those structures being the pathways for mineralization fluids. The exclusive occurrence of continuous CL rims on detrital quartz grains and the abundance of U-bearing minerals in both generations of overgrowths suggest that U mineralization must have commenced during early diagenesis and continued during the formation of overgrowths. The absence of significant radiation damages in altered basement rocks supports the hypothesis that the basement was not a major source for uranium mineralization in the Athabasca basin. The common occurrence of CL haloes in euhedral quartz grains and CL patches associated with U-bearing minerals in faults, fractures and voids provide further (visual) evidence for late remobilization of uranium.
2

Electron-paramagnetic-resonance spectroscopy study of radiation-damage-induced cathodoluminescence in quartz, Athabasca Basin

Botis, Sanda Maria 08 September 2005 (has links)
This thesis presents the results of a combined cathodoluminescence (CL) and electron paramagnetic resonance (EPR) spectroscopic study of quartz from the uranium-mineralized Athabasca Basin. CL imaging not only distinguishes detrital quartz grains from their secondary overgrowths but also is able to differentiate two generations of overgrowths in the Athabasca sandstones. Moreover, the Athabasca quartz samples are characterized by three types of bright CL: 1) haloes around U- and Th-bearing mineral inclusions, 2) patches associated with U-bearing minerals in matrices or pores and 3) continuous rims in samples with or without any visible U-bearing minerals. These three types of bright CL are all of constant widths of ~35-45 Ým, indicative of bombardments of alpha particles emitted from the 238U, 235U and 232Th decay series. CL spectral analyses show that the radiation damaged areas, relative to their undamaged hosts, are characterized by intense but broad emission bands at ~350 nm and 620-650 nm. <p>Detailed EPR measurements of the Athabasca quartz samples revealed six paramagnetic defects: one oxygen vacancy center (E1'), three silicon vacancy hole centers (O23¡V/H+(I), O23¡V/H+(II) and O23¡V/M+) and two O2¡V peroxy centers. Moreover, dissolution experiments using concentrated HF showed that that the silicon vacancy hole centers and the peroxy centers are concentrated in the radiation-damaged rims/fractures, whereas the oxygen vacancy center (E1') is evenly distributed in quartz grains. CL and EPR data of quartz samples after isochronal annealing experiments suggest that the silicon vacancy hole centers and the peroxy centers are most likely responsible for the characteristic ultraviolet CL and the red CL, respectively. <p>CL haloes in detrital quartz grains are ubiquitous in the Athabasca sandstones. CL patches are also widespread but are best developed in altered sandstones close to the unconformity or faults/fractures. Continuous CL rims, however, are more restricted in occurrences and are best developed at the high-grade Cigar Lake and McArthur River deposits, where they are restricted to lithological boundaries and faults and are pervasively developed in mineralized samples and associated alteration haloes close to the unconformity. At the Key Lake deposit, continuous rims occur only in mineralized samples close to the unconformity. Continuous CL rims are absent in basement rocks below mineralization, including those at the Cigar Lake and McArthur River deposits. The occurrence of radiation damages in Athabasca quartz have also been confirmed by detailed EPR measurements, which are significantly more sensitive than CL imaging. <p>Continuous CL rims on Athabasca quartz grains most likely record bombardments of alpha particles emitted from U-bearing mineralization fluids. Therefore, their associations with the unconformity, lithological boundaries and faults provide direct evidence for those structures being the pathways for mineralization fluids. The exclusive occurrence of continuous CL rims on detrital quartz grains and the abundance of U-bearing minerals in both generations of overgrowths suggest that U mineralization must have commenced during early diagenesis and continued during the formation of overgrowths. The absence of significant radiation damages in altered basement rocks supports the hypothesis that the basement was not a major source for uranium mineralization in the Athabasca basin. The common occurrence of CL haloes in euhedral quartz grains and CL patches associated with U-bearing minerals in faults, fractures and voids provide further (visual) evidence for late remobilization of uranium.
3

Lithium, Boron and Pb-Pb Isotopic Signatures of the Basement Lithologies Underlying the Eastern Athabasca Basin

2015 December 1900 (has links)
The eastern margin of the Proterozoic Athabasca Basin in northern Saskatchewan is host to several of the highest-grade unconformity-related (U/C-related) uranium deposits in the world. Many researchers agree that uranium deposition occurred due to oxidized basinal brines transporting uranium mixing with reducing fluids or interacting with reduced rock causing uranium to precipitate, although the source of the uranium is still an unresolved and highly debated subject. Boron isotopic signatures, preserved in refractory minerals such as tourmaline, can aid in determining the source of fluids and P-T conditions during crystallization whereas lithium isotopic fractionation is indicative of weathering, hydrothermal alteration, and/or igneous and metamorphic processes. For this study a suite of fresh to strongly altered basement samples were selected from multiple sites below the eastern Athabasca Basin to measure the bulk delta7Li, delta11B and Pb-Pb isotopic signatures. Kinetic modelling of the Li and B isotopic systems suggest that both systems are slightly conservative of their original fluid reservoir, and by calculating the Damkohler numbers (ND) it is predicted that delta11B will be more indicative of the fluid source whereas lithium isotopes will equilibrate over shorter distance. However, both isotopic systems will fractionate with large concentration changes. Significant variations were observed for both delta7Li and delta11B, delta7Li values ranged from 0 to 14 ‰, the range in delta7Li was interpreted to be representative of both partial melting of metasediments to form granitic pegmatites and hydrothermal fluids. In comparison the range for delta11B was much larger from -16 to +17‰, within the dataset there appeared to be regional isotopic differences but unfortunately this dataset was too small to determine regional isotopic patterns. For each region the delta11B for the pegmatites was often heavier than the metasedimentary samples suggesting a metasedimentary source for the granitic pegmatites. Elevated U concentrations and decreasing 207Pb/206Pb ratios in both altered and unaltered samples suggest radiogenic Pb and U are present both in the basement and in fluids transporting U through the basement. Partial digestion 207Pb/206Pb ratios range from the common 207Pb/206Pb ratios of 0.7 to radiogenic 207Pb/206Pb ratios of 0.1. The radiogenic 207Pb/206Pb are indicative of either resetting of residual material during fluid migration or radiogenic fluids sources interacting with the rocks of this study.
4

Petrology of the non-mineralized Wheeler River sandstone-hosted alteration system and the Eagle Point and Millennium basement-hosted unconformity-related uranium deposits, Athabasca Basin, Saskatchewan: implications for uranium exploration

Cloutier, Jonathan 06 October 2009 (has links)
A study of the Millennium and Eagle Point basement-hosted deposits was conducted to obtain a comprehensive understanding of the alteration in these two atypical uraniferous systems and to apply these findings in formulating effective exploration strategies. In addition, an investigation of the Wheeler River “apparently barren” sandstone-hosted alteration system was conducted to provide insights into the critical events needed in order to form sandstone-hosted unconformity-related deposits. At Millennium, the atypical alteration halo, wherein the inner chlorite halo is much smaller than other basement-hosted deposits, is the result of pervasive muscovite alteration of the basement rocks by Na-K-Fe basinal brines during the pre-ore stage at ca. 250°C. As alteration of the basement rocks progressed, the basinal brines acquired Ca, Fe and Mg while creating up to 20% voids in the basement rocks. Prior to the mineralizing event, the chemically modified basinal fluids formed a minor Fe-rich chamoisite halo that demarcates a redox front during the ca. 1590 Ma syn-ore stage, where uranium ore was precipitated. At Eagle Point, the atypical alteration halo, wherein dolomite and calcite alteration is more significant than other basement-hosted deposits, is the result of more intense pre-Athabasca Basin alteration. The Eagle Point deposit is also distinct by significant late remobilization of primary uraninite into secondary structures that occurred at ca. 535 Ma. At the Wheeler River “apparently barren” alteration system, the critical factor for the lack of uranium mineralization in the sandstone is the temporal relationship between the different fluids with the uranium-bearing oxidized basinal fluids present prior to the reduced chemically modified basinal fluids and reduced basement fluids. However, the possibility of a small basement-hosted uranium deposit at Wheeler River cannot be excluded because the sudoite-producing basement fluids may represent basinal brines that reacted with basement lithologies to become reducing and Mg-rich, and therefore may have precipitated uraninite during this process. The results of this study support the genetic model in which basinal fluids were likely the source of uranium deposits and that the basement fluids were unlikely significant sources of uranium in sandstone-hosted deposits. / Thesis (Ph.D, Geological Sciences & Geological Engineering) -- Queen's University, 2009-09-30 14:49:03.688
5

Graphite-bearing and graphite-depleted basement rocks in the Dufferin Lake Zone, south-central Athabasca Basin, Saskatchewan

2014 July 1900 (has links)
Unconformity-type uranium deposits from the Athabasca Basin are considered to be the result of mixing between oxidized basinal brines and basement-derived reduced fluids/gases, and/or reduced basement rocks. Graphite and/or its breakdown products are suggested to be responsible for uranium mineralization by acting as a reductant that could trigger deposition of uranium. Also, graphite is considered to be indicative of basement structures; being often concentrated along structures which can be identified as electromagnetic (EM) conductors. Thus, exploration for uranium deposits is often focused on the search for EM conductors. Underlying the sedimentary rocks of the basin in the Dufferin Lake zone are variably graphitic pelitic schists (VGPS); altered to chlorite and hematite (Red/Green Zone: RGZ), and locally bleached equivalents near the unconformity during paleoweathering or later fluid interactions. These altered zones are texturally similar rocks within “graphite-depleted zones” as the unconformity is approached. Both zones are characterized by a lower concentration of carbon and sulfur, with the bleached zone showing higher concentrations of uranium and boron, the latter corresponding to high dravite content. The major element composition of the graphite-bearing pelitic schists and altered equivalents (RGZ) are similar. Raman analyses indicate that well-ordered carbon species (graphite to semi-graphite) are present in the pelitic schists, with both types more common within shear zones. In contrast, only rare low-ordered carbon species (carbonaceous matter) were detected in the graphite-depleted samples within the RGZ. This variation is interpreted to be the result of graphite consumption by oxidizing fluids migrating downward from the Athabasca Group. This graphite consumption may have resulted in the production of a mobile reductant (gas or fluid), which may have played a subsequent role in the deposition of uranium mineralization. Secondary fluid inclusions (FI) examined in different quartz vein generations using microthermometry and Raman analysis, provide an indication of the fluids that have interacted with these rocks. Monophase vapor are the dominant type of fluid inclusions in the VGPS, whereas aqueous two-phase (L+V) and three-phase (L+V+Halite) FI occur in the RGZ. CH4-dominant and N2-dominant FI identified using Raman could be the result of fluid(s) interaction with the graphitic lithologies. This would have generated the breakdown of graphite to CH4 and associated feldspars/micas to NH4/N2. CH4, N2 and H2 (resulting from the decomposition of NH4+) represent possible reductants of uranium-bearing brines. Two brines in the RGZ: a regional basinal fluid and an evolved fluid possibly related to U mineralization; similar to other nearby deposits, are observed. These suggest that the basinal brines have circulated in the basement rocks and have been able to evolve by interaction with the basement rocks to possibly be related to uranium mineralization.
6

Geochemical Surface Expression of the Phoenix and Millennium Uranium Deposits, Athabasca Basin, Saskatchewan

Power, Michael James 16 April 2014 (has links)
The geochemistry of surface media above two known U deposits were examined to observe any possible dispersion products could be detected from them, and based on these findings, improved geochemical exploration techniques are proposed to reduce cost of finding undiscovered U resources. This study examined the materials overlying the Phoenix deposits, which have indicated resources of approximately 58.2 million lbs U3O8 grading 15 wt% that lie at 400 m depth below surface at the unconformity between the overlying Athabasca sandstones and Paleoproterozoic basement rocks. Aqua regia digestion, ammonium acetate at pH 5 and hydroxylamine leaches revealed U, Pb, Co, Ni, Mo, and W anomalies in humus and U, W and As anomalies in B-horizon soils above the ore zones and the basement location of a deposit-hosting, northeast-trending “WS Hanging Wall” shear zone over a three year period. These metal signatures suggest likely upward transport of metals from the deposits to overlying sandstones, and subsequently into the overlying till and soils. This study also looked at materials above the Millennium U deposit, which has indicated resources of 68.2 million lbs U3O8 grading 4 wt% at ~750 m depth that occurs along a major fault in granites & metamorphosed pelites of Paleoproterozoic age below the Athabasca sandstones. Soil samples taken over the surface projections of an ore-hosting fault and the ore zone yielded anomalous values in U, Ni, Cu and Pb in aqua regia digestion of humus and U, Cu and Pb values in ammonium acetate leach of pH 5 of B-horizon soils. Hydroxylamine leach did not yield as many anomalies as ammonium acetate leach. Measured 4He/36Ar ratios of gas dissolved in water-filled drill holes were observed to be up to about 700 times the atmosphere value for air-saturated water, revealing the presence of radiogenic 4He that was likely produced from decaying U and released in the groundwater above the deposit. Our results suggest upward migration of metals to surface through porous sandstone and fault systems at Phoenix, and upward migration of metals along faults and He gas at Millennium. Both studies indicate the importance of the traverse method of sampling over targets perpendicular to the last major ice-flow event to discern U deposits that are defined by other means.
7

Geochemical Surface Expression of the Phoenix and Millennium Uranium Deposits, Athabasca Basin, Saskatchewan

Power, Michael James January 2014 (has links)
The geochemistry of surface media above two known U deposits were examined to observe any possible dispersion products could be detected from them, and based on these findings, improved geochemical exploration techniques are proposed to reduce cost of finding undiscovered U resources. This study examined the materials overlying the Phoenix deposits, which have indicated resources of approximately 58.2 million lbs U3O8 grading 15 wt% that lie at 400 m depth below surface at the unconformity between the overlying Athabasca sandstones and Paleoproterozoic basement rocks. Aqua regia digestion, ammonium acetate at pH 5 and hydroxylamine leaches revealed U, Pb, Co, Ni, Mo, and W anomalies in humus and U, W and As anomalies in B-horizon soils above the ore zones and the basement location of a deposit-hosting, northeast-trending “WS Hanging Wall” shear zone over a three year period. These metal signatures suggest likely upward transport of metals from the deposits to overlying sandstones, and subsequently into the overlying till and soils. This study also looked at materials above the Millennium U deposit, which has indicated resources of 68.2 million lbs U3O8 grading 4 wt% at ~750 m depth that occurs along a major fault in granites & metamorphosed pelites of Paleoproterozoic age below the Athabasca sandstones. Soil samples taken over the surface projections of an ore-hosting fault and the ore zone yielded anomalous values in U, Ni, Cu and Pb in aqua regia digestion of humus and U, Cu and Pb values in ammonium acetate leach of pH 5 of B-horizon soils. Hydroxylamine leach did not yield as many anomalies as ammonium acetate leach. Measured 4He/36Ar ratios of gas dissolved in water-filled drill holes were observed to be up to about 700 times the atmosphere value for air-saturated water, revealing the presence of radiogenic 4He that was likely produced from decaying U and released in the groundwater above the deposit. Our results suggest upward migration of metals to surface through porous sandstone and fault systems at Phoenix, and upward migration of metals along faults and He gas at Millennium. Both studies indicate the importance of the traverse method of sampling over targets perpendicular to the last major ice-flow event to discern U deposits that are defined by other means.
8

Altération et minéralisation d'uranium à Shea Creek (Ouest Athabasca, Saskatchewan, Canada) : vers un nouveau modèle génétique de gisement / Clay alteration and uranium mineralization in the Shea Creek area in the Athabasca basin, Saskatchewan, Canada : toward a new model of genesis of unconformity related uranium deposits

Uri, Freddy 13 December 2012 (has links)
Shea Creek est un gisement d'uranium liée à la discordance entre un socle métamorphique et des roches sédimentaires d'origine fluviatile, d'âge Paléo-protérozoïque et situé dans la partie ouest du bassin d'Athabasca. Ce gisement majeur est le plus profond connu actuellement dans le bassin (entre 680 m et 1000 m de profondeur). Il rassemble en un même lieu tous les types de minéralisation associés à une discordance connus de par le monde. Cette étude s'appuie sur l'analyse de plus de 1200 échantillons du halo d'altération qui entoure le gisement et sur l'utilisation des données d'exploration minière. L'objectif est double. Il s'agit d'une part de déterminer des guides sédimentologiques, pétrographiques, minéralogiques et géochimiques pour la prospection des corps minéralisés en zone profonde et d'autre part d'utiliser ces critères pour construire une représentation tridimensionnelle simplifiée (minéralisation et halo d'altération) permettant de préciser le modèle génétique de ce gisement profond. La localisation des différentes zones minéralisées dépend non seulement des phénomènes d'altération liés aux circulations hydrothermales contrôlées par la tectonique, mais aussi de la nature du remplissage sédimentaire et de son évolution diagénétique. L'architecture de la zone minéralisée de Shea Creek montre que les corps minéralisés sont localisés dans des structures en grabben remplies par des alternances de grès propres et de grès argileux souvent préservés de la compaction et de l'altération. La signature minéralogique et géochimique de ces grès suggère un apport provenant de l'érosion de paléo-altérites continentales (régolithe). La très forte concentration en défauts d'ir / Shea Creek is an unconformity-type uranium deposit located in the west part of Atabaska basin. It is related to an unconformity between a metamorphic basement and sedimentary rocks of fluvial origin, of paleoproterozoic age. Shea Creek's particularity is to be the deepest ore deposit ever known in the basin (between 680 m and 1000 m deep). It gathers all types of unconformity hosted mineralization known. More than 1200 samples, taken from halo alteration around the deposit, were analyzed and mining exploration data were used for this study. First, the aim was to determine the markers for prospection of mineral elements in deep area: sedimentological, petrographical, geochemical and mineralogical types. Then, it was to build a simple three-dimensional model (mineralization and alteration halo) using these criteria in order to precise the genetic pattern of this deep deposit. The location of mineralized areas depends on tectonic deformation, on sedimentary filling and diagenetic development. The morphology of Shea Creek’s ore deposit shows clearly that mineralization is located in the grabbens composed by clean sandstones and clay sandstones, often preserved from compaction and alteration phenomena. The mineralogical and geochemical signature of these clay sandstones suggests a contribution from the erosion of continental paleo-alterite (regolith). Beside, the great concentration of radiation induced defects suggests the presence in abundance of uranium in the grabbens from sedimentary state.

Page generated in 0.0357 seconds